УДК 536.4: 541.8

# ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПЛОТНОСТИ ВОДНЫХ РАСТВОРОВ БРОМИДА ЛИТИЯ ДО 250 °С В ИНТЕРВАЛЕ МАССОВЫХ КОНЦЕНТРАЦИЙ ОТ 30 ДО 65 %<sup>\*</sup>

## Р.А. ХАЙРУЛИН, В.А. ГРУЗДЕВ, С.В. СТАНКУС, О.И. ВЕРБА

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

Методом просвечивания образцов узким пучком монохроматического гамма-излучения исследована плотность водных растворов бромида лития на линии насыщения от температуры ликвидус до 250 °C на пяти образцах с начальной концентрацией 30,927; 39,706; 50,936; 59,322; 65,148 масс. % LiBr. Погрешности измерения температуры и плотности составили ±0,02÷0,05 °C и ±0,05 % соответственно. Получены аппроксимирующие уравнения и таблицы справочных данных для температурной и концентрационной зависимости плотности. Проведено сопоставление результатов измерений с известными литературными данными.

## введение

Исследования плотности жидкостей в широком диапазоне термодинамических параметров, особенно исследования, отличающиеся высокой точностью измерения (до 0,05 % и лучше), представляют большой научный интерес, поскольку дают ценную информацию о структуре чистых жидкостей и растворов, а также о свойствах и состоянии компонентов в растворах. Так, на основе экспериментальных исследований объемных свойств растворов электролитов сделаны важные выводы о влиянии ионов на структуру растворителя и свойства слабых растворов [1]. Из известных абсолютных методов измерения плотности жидкостей наибольшую точность (~0,01 %) обеспечивает метод пикнометра. Однако этот метод весьма трудоемок, а его реализация при повышенных температурах связана с существенным усложнением экспериментальной установки, что неизбежно ведет к потере точности измерений. В связи с этим представляется перспективным использовать для исследования плотности растворов LiBr гамма-метод [2, 3, 4], который обладает высокой точностью (до 0,05 %) и сохраняет свои метрологические характеристики при высоких температурах.

Практическая значимость исследований водных растворов LiBr связана с их использованием в качестве рабочих тел мощных кондиционеров и высокотемпературных тепловых насосов. В последнее десятилетие рассматриваются проекты использования этих растворов в трансформаторах тепла при температурах до 200 °C и выше [5]. Термодинамические свойства системы LiBr + H<sub>2</sub>O достаточно подробно изучены до 100÷130 °C [6–14]. При температурах выше 130 °C

<sup>&</sup>lt;sup>\*</sup> Работа выполнена при финансовой поддержке РФФИ (грант № 04-02-16302).

<sup>©</sup> Хайрулин Р.А., Груздев В.А., Станкус С.В., Верба О.И., 2006

опубликованные экспериментальные данные малочисленны, противоречивы или вовсе отсутствуют.

Цель настоящей работы состояла в разработке методики измерения плотности водных растворов солей на основе гамма-метода и исследовании плотности системы LiBr +  $H_2O$  в важном для техники диапазоне температур от 20 до 250 °C и концентрациях до 65 масс. %. Отметим, что в данной работе гамма-метод впервые применен для измерения плотности водных растворов электролитов.

## 1. ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА И ПРОЦЕДУРА ИЗМЕРЕНИЙ

Эксперименты по определению плотности системы LiBr + H<sub>2</sub>O проводились на гамма-плотномере П-2 Института теплофизики СО РАН [3], оснащенном новой измерительной ячейкой, разработанной авторами под цели исследований. Источником гамма-квантов с энергией 662 кэВ служил изотоп цезий-137 активностью около 50 ГБк. Интенсивность излучения измерялась сцинтилляционным детектором с кристаллом NaJ(Tl).

Герметичная измерительная ячейка высокого давления в виде толстостенного цилиндра внутренним диаметром 30 мм с крышками изготовлена из титана марки ВТ-1. Коллимированный пучок гамма-излучения диаметром 4,4 мм проходил через плоские торцевые стенки ячейки. Длина поглощения составляла 112 мм. Ячейка помещалась в сухой термостат, температура в котором поддерживалась постоянной в пределах  $\pm(1\div2)$  мК. С помощью подъемного устройства термостат с ячейкой мог вертикально перемещаться относительно пучка излучения. Это давало возможность сканировать исследуемый образец по высоте и, тем самым, контролировать его однородность. Принудительное перемешивание растворов осуществлялось покачиванием термостата. Температура образцов (по МТШ-90) измерялась платиновым термометром сопротивления с погрешностью 0,02 $\pm$ 0,05 К. Термометр предварительно градуировался в Сибирском НИИ метрологии.

Для определения плотности использовался относительный вариант гаммаметода [2]

$$\rho(t) = \rho_R \frac{\ln[J_0(t)/J(t)]}{\ln[J_0(t_R)/J(t_R)]} \frac{[1+\alpha(t_R)(t_R-20)]}{[1+\alpha(t)(t-20)]}.$$
(1)

Здесь t — температура в °С,  $\rho$  — плотность раствора,  $t_R$  — опорная температура (как правило, 20 °С),  $\rho_R = \rho(t_R)$  — плотность раствора при опорной температуре,  $\alpha(t) = [l(t) - l_{20}] / [l_{20} (t - 20)]$  — средний линейный коэффициент теплового расширения материала измерительной ячейки,  $l_{20}$  и l(t) — длина поглощения при 20 °С и текущей температуре соответственно,  $J_0(t)$ , J(t) — интенсивности пучка излучения, прошедшего через пустую и заполненную (с образцом) измерительную ячейку. Зависимость  $J_0(t)$  определялась в тарировочных экспериментах. Детальное описание методик измерения  $J_0(t)$ , J(t), "мертвого времени" счетного канала и т. д. дано в [2–4]. Средний линейный коэффициент теплового расширения титана, из которого изготовлена ячейка, был определен дилатометрическим методом в интервале температур 20÷500 °С с погрешностью менее 3 %.

Для оценки величин неисключенной систематической погрешности была измерена плотность дистиллированной деаэрированной воды на линии насыщения до 275 °C. Эти эксперименты показали, что отклонение наших данных от справочных [15] не превосходят 0,05 % во всем исследованном интервале.

Растворы для исследования готовили из соли марки XЧ с содержанием LiBr по TУ не менее 99,0 масс. % и дважды дистиллированной в кварцевом приборе воды. Коммерческую соль предварительно очищали путем перекристаллизации. Концентрацию растворов определяли по достаточно хорошо изученной в области умеренных температур концентрационной зависимости плотности [8]. Плотность приготовленных образцов измеряли с помощью пикнометров объемом ~30 см<sup>3</sup> в термостате при 20 °C как перед заполнением измерительной ячейки, так и после окончания высокотемпературных опытов. Погрешность измерения плотности пикнометром не превышала  $\pm (0,5 \div 1,0)$  кг/м<sup>3</sup>, а ошибки определения начальной концентрации  $\pm (0,05 \div 0,1)$  масс. % LiBr. Эти значения плотности использовали в качестве  $\rho_R$ . Образец с концентрацией ~65 % готовился выпариванием менее концентрированного раствора и в горячем виде заливался в измерительную ячей-ку. После окончания эксперимента слитый образец разбавляли до концентрации ~50% и, как описано выше, определяли плотность и концентрацию полученного раствора. Концентрацию исходного образца рассчитывали по известной степени разбавления. В качестве опорной плотности в этом случае брали данные [8] при 50°С.

Измерения плотности проводились при постоянной температуре, после длительного термостатирования ячейки. Предварительно раствор тщательно перемешивался, а непосредственно перед измерениями проверялась однородность образцов путем их сканирования.

## 2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Высокотемпературные измерения плотности проведены в интервале от температуры ликвидуса до 250 °C на 5-ти образцах с начальными концентрациями *w*: 30,927, 39,706, 50,936, 59,322 и 65,148 масс. % LiBr.

При нагреве измерительной ячейки небольшое количество воды из раствора переходит в паровой объем. Значения концентраций жидкой фазы, приведенные в табл. 1, были рассчитаны с учетом этого испарения, используя данные по давлению пара над раствором [5] и по плотности пара [15]. Изменения концентрации, обусловленные этим процессом, небольшие (0,05÷0,22 масс. %), однако они учитывались при обработке результатов измерений.

Дальнейший анализ полученных данных проводили в координатах

$$Y(t, m) = \frac{1}{m} \left[ \frac{\rho(t, m)}{\rho_0(t)} - 1 \right] = f(t, m^{0.5}),$$

где  $\rho(t, m)$  и  $\rho_0(t)$  — соответственно плотность раствора и чистой воды [16],  $m = w/M_s (1-w)$  — моляльность (концентрация в моль/кг), w — концентрация в массовых долях и  $M_s = 0,086845$  (кг/моль) — молекулярная масса LiBr. В области исследованных термодинамических параметров концентрационные зависимости комплекса Y(t, m) от  $m^{0.5}$  близки к линейным (рис. 1). Поэтому экспериментальные данные (см. табл. 1) были аппроксимированы уравнением [1]

$$\rho(t, m) = \rho_0(t) \Big[ 1 + d_0(t)m + d_1(t)m^{1.5} + d_2(t)m^2 \Big],$$
(2)

где

$$d_{j}(t) = \sum_{i=0}^{4} C_{ji} t^{i}.$$
(3)

625

Экспериментальные значения плотности растворов бромида лития

|         |                    | 2                            |         |                    | 2                            |
|---------|--------------------|------------------------------|---------|--------------------|------------------------------|
| t, °C   | <i>w</i> , масс. % | <i>ρ</i> , кг/м <sup>3</sup> | t, °C   | <i>w</i> , масс. % | <i>ρ</i> , кг/м <sup>3</sup> |
| 21,030  | 30,927             | 1272,38                      | 151,490 | 50,964             | 1468,61                      |
| 21,035  | 30,927             | 1271,97                      | 151,492 | 50,964             | 1468,40                      |
| 21,255  | 30,927             | 1272,47                      | 151,492 | 50,965             | 1469,31                      |
| 22,177  | 30,927             | 1272,92                      | 161,873 | 50,973             | 1461,28                      |
| 34,390  | 30,928             | 1267,34                      | 171,736 | 50,983             | 1454,80                      |
| 50,193  | 30,928             | 1260,16                      | 181,855 | 50,995             | 1447,27                      |
| 60,171  | 30,929             | 1254,70                      | 191,951 | 51,009             | 1440,47                      |
| 70,184  | 30,929             | 1248,85                      | 201,911 | 51,026             | 1433,46                      |
| 70,181  | 30,929             | 1248,28                      | 211,743 | 51,046             | 1426,26                      |
| 80,194  | 30,930             | 1243,17                      | 211,746 | 51,046             | 1425,23                      |
| 90,183  | 30,932             | 1237,09                      | 221,528 | 51,068             | 1418,74                      |
| 100,148 | 30,934             | 1231,40                      | 231,248 | 51,094             | 1411,15                      |
| 110,172 | 30,936             | 1224,90                      | 241,006 | 51,124             | 1404,77                      |
| 120,147 | 30,939             | 1218,52                      | 250,794 | 51,159             | 1397,62                      |
| 130,153 | 30,943             | 1211,75                      | 21,325  | 59,322             | 1705,49                      |
| 140,187 | 30,947             | 1205,04                      | 22,362  | 59,322             | 1703,94                      |
| 150,205 | 30,953             | 1197,27                      | 33,990  | 59,322             | 1696,43                      |
| 160.224 | 30,960             | 1189.50                      | 49,160  | 59.322             | 1686.21                      |
| 170,193 | 30,968             | 1182.45                      | 63,736  | 59.323             | 1676.79                      |
| 180,131 | 30,978             | 1174.72                      | 77.854  | 59,323             | 1667.44                      |
| 190 111 | 30,989             | 1166.45                      | 77 854  | 59 323             | 1666.90                      |
| 190,118 | 30,989             | 1166.63                      | 88 199  | 59 324             | 1660.02                      |
| 200.077 | 31,002             | 1158 75                      | 98 577  | 59 325             | 1653.47                      |
| 210.076 | 31,002             | 1150,75                      | 109.020 | 59,325             | 1646.47                      |
| 210,070 | 31,017             | 1142.14                      | 119,020 | 59 327             | 1639.27                      |
| 220,042 | 31,055             | 1133 10                      | 129 897 | 59 329             | 1632.06                      |
| 230,055 | 21.078             | 1124 52                      | 120,807 | 50,320             | 1621.12                      |
| 240,002 | 31,078             | 1115 14                      | 129,890 | 59,329             | 1624.66                      |
| 230,113 | 31,103             | 1113,14                      | 139,002 | 50 225             | 1617 16                      |
| 21,091  | 39,700             | 1376,21                      | 149,093 | 59,333             | 1610.67                      |
| 21,780  | 39,700             | 1377,77                      | 139,972 | 59,559             | 1610,07                      |
| 55,215  | 39,706             | 1372,38                      | 170,043 | 59,344             | 1506.20                      |
| 50,568  | 39,707             | 1304,74                      | 180,043 | 59,350             | 1596,29                      |
| 61,221  | 39,707             | 1358,54                      | 189,599 | 59,356             | 1588,98                      |
| 71,250  | 39,708             | 1352,68                      | 199,977 | 59,365             | 1581,63                      |
| 71,249  | 39,708             | 1353,19                      | 21,765  | 59,322             | 1704,25                      |
| 81,720  | 39,709             | 1347,28                      | 199,976 | 59,365             | 1582,05                      |
| 91,558  | 39,710             | 1341,63                      | 210,194 | 59,376             | 1574,57                      |
| 101,944 | 39,712             | 1335,41                      | 220,326 | 59,388             | 1565,75                      |
| 111,341 | 39,714             | 1329,43                      | 230,392 | 59,402             | 1559,11                      |
| 120,741 | 39,717             | 1324,03                      | 240,239 | 59,419             | 1551,79                      |
| 130,437 | 39,720             | 1317,74                      | 250,042 | 59,437             | 1544,52                      |
| 21,091  | 39,706             | 1378,21                      | 50,406  | 65,148             | 1812,62                      |
| 140,828 | 39,724             | 1310,24                      | 130,563 | 65,151             | 1752,73                      |
| 150,420 | 39,729             | 1303,74                      | 120,610 | 65,150             | 1760,27                      |
| 160,061 | 39,736             | 1296,69                      | 110,605 | 65,149             | 1767,75                      |
| 170,488 | 39,743             | 1290,06                      | 110,592 | 65,149             | 1766,99                      |
| 180,438 | 39,751             | 1282,66                      | 99,795  | 65,149             | 1776,15                      |
| 180,434 | 39,751             | 1282,49                      | 89,937  | 65,149             | 1782,52                      |
| 190,573 | 39,762             | 1275,44                      | 80,041  | 65,148             | 1789,92                      |
| 200,645 | 39,773             | 1266,70                      | 130,561 | 65,151             | 1752,73                      |
| 210,644 | 39,787             | 1258,83                      | 140,445 | 65,152             | 1745,89                      |
| 220,616 | 39,803             | 1251,80                      | 150,305 | 65,153             | 1738,33                      |
| 230 551 | 39.821             | 1244.25                      | 160,199 | 65.154             | 1731.25                      |

| t, °C   | <i>w</i> , масс. % | <i>ρ</i> , кг/м <sup>3</sup> | t, °C   | <i>w</i> , масс. % | $ ho$ , кг/м $^3$ |
|---------|--------------------|------------------------------|---------|--------------------|-------------------|
| 240,478 | 39,841             | 1235,91                      | 170,049 | 65,156             | 1723,27           |
| 250,259 | 39,864             | 1228,62                      | 180,013 | 65,159             | 1716,18           |
| 19,270  | 50,936             | 1548,31                      | 60,364  | 65,148             | 1804,97           |
| 19,276  | 50,936             | 1548,79                      | 70,208  | 65,148             | 1797,25           |
| 33,180  | 50,936             | 1540,68                      | 80,027  | 65,148             | 1790,47           |
| 51,297  | 50,937             | 1530,13                      | 110,575 | 65,149             | 1767,46           |
| 60,940  | 50,937             | 1524,80                      | 110,574 | 65,149             | 1766,93           |
| 71,641  | 50,938             | 1518,11                      | 110,573 | 65,149             | 1767,38           |
| 81,777  | 50,939             | 1513,15                      | 110,576 | 65,149             | 1767,58           |
| 93,218  | 50,941             | 1505,47                      | 189,977 | 65,161             | 1708,45           |
| 93,222  | 50,941             | 1505,93                      | 199,985 | 65,165             | 1700,32           |
| 101,984 | 50,943             | 1500,35                      | 212,618 | 65,170             | 1690,72           |
| 111,812 | 50,945             | 1495,12                      | 225,152 | 65,177             | 1680,59           |
| 121,997 | 50,949             | 1488,60                      | 237,681 | 65,185             | 1670,36           |
| 131,377 | 50,953             | 1482,47                      | 250,133 | 65,194             | 1660,81           |
| 141,365 | 50,958             | 1475,34                      |         |                    |                   |
|         |                    |                              |         |                    |                   |

Коэффициенты  $C_{ji}$  уравнения (3) приведены в табл. 2. Уравнение (2) использовалось для расчета таблиц плотности при целых значениях концентраций, удобных для практического применения и сравнения с данными других авторов. В табл. 3 представлены значения плотности исследованных растворов при значениях концентрации  $w^*$ : 0,30, 0,40, 0,50, 0,60 и 0,65, которым соответствуют значения моляльности  $m^*$ : 4,9349, 7,6765, 11,5148, 17,272 и 21,3846 моль/кг. Ввиду малой величины поправок значения плотности рассчитывались по формуле

$$\rho(t, m^*) = \rho(t, m) + (d\rho/dm) \cdot (m^* - m), \qquad (4)$$

где  $\rho(t, m)$  и m — плотности, кг/м<sup>3</sup> и концентрации, моль/кг раствора (см. табл. 1),  $(d\rho/dm)$  — производная, рассчитанная по уравнению (2) для температуры t °C и средней концентрации  $(m+m^*)/2$ . Ошибки интерполяции и экстраполяции по уравнению (4) не превышали погрешностей эксперимента.



*Рис. 1.* Концентрационная зависимость (моль/кг) приведенной плотности водных растворов бромида лития,  $\rho_0(t)$  — плотность чистой воды.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Коэффициенты С <sub>//</sub> уравнения (3) |                          |                          |                           |                            |                           |  |
|--------------------------------------------------------|--------------------------------------------|--------------------------|--------------------------|---------------------------|----------------------------|---------------------------|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $j \setminus i$                            | 0                        | 1                        | 2                         | 3                          | 4                         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0                                          | $6,9979 \cdot 10^{-2}$   | $-9,36591 \cdot 10^{-5}$ | $1,1770035 \cdot 10^{-6}$ | $-2,829722 \cdot 10^{-9}$  | $7,963374 \cdot 10^{-12}$ |  |
|                                                        | 1                                          | $-7,30855 \cdot 10^{-3}$ | $1,78947 \cdot 10^{-5}$  | $-3.458841 \cdot 10^{-8}$ | $-8,88725 \cdot 10^{-10}$  | $1,085224 \cdot 10^{-12}$ |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 2                                          | $1,811867 \cdot 10^{-4}$ | $-1.92920 \cdot 10^{-6}$ | $-1,565022 \cdot 10^{-8}$ | 2,082693.10 <sup>-10</sup> | $-3,76112 \cdot 10^{-13}$ |  |

# Коэффициенты С., уравнения (3)

# Таблица З

| Результаты измерений | приведенные к целым | і значениям концентраций |
|----------------------|---------------------|--------------------------|

| <i>t</i> , °C | <i>ρ</i> , кг/м <sup>3</sup> | t, °C  | $ ho$ , кг/м $^3$ | t, °C  | <i>ρ</i> , кг/м <sup>3</sup> |
|---------------|------------------------------|--------|-------------------|--------|------------------------------|
| 30 масс.      | % LiBr                       | 180,44 | 1285,96           | 88,20  | 1673,52                      |
| 21,26         | 1262,22                      | 190,57 | 1278,61           | 98,58  | 1666,89                      |
| 22,18         | 1262,67                      | 200,65 | 1269,73           | 109,02 | 1659,81                      |
| 34,39         | 1257,17                      | 210,64 | 1261,68           | 119,42 | 1652,53                      |
| 50,19         | 1250,03                      | 220,62 | 1254,45           | 129,90 | 1645,24                      |
| 60,17         | 1244,59                      | 230,55 | 1246,67           | 129,90 | 1644,31                      |
| 70,18         | 1238,72                      | 240,48 | 1238,08           | 139,88 | 1637,75                      |
| 70,18         | 1238,15                      | 250,26 | 1230,49           | 149,90 | 1630,15                      |
| 80,19         | 1233,02                      | 50 ма  | cc. % LiBr        | 159,97 | 1623,55                      |
| 90,18         | 1226,92                      | 19,27  | 1532,47           | 170,04 | 1615,92                      |
| 100,15        | 1221,18                      | 19,28  | 1532,95           | 180,04 | 1608,90                      |
| 110,17        | 1214,64                      | 33,18  | 1525,04           | 189,60 | 1601,43                      |
| 120,15        | 1208,19                      | 51,30  | 1514,66           | 199,98 | 1593,88                      |
| 130,15        | 1201,35                      | 60,94  | 1509,39           | 199,98 | 1594,30                      |
| 140,19        | 1194,54                      | 71,64  | 1502,74           | 210,19 | 1586,59                      |
| 150,21        | 1186,67                      | 81,78  | 1497,81           | 220,33 | 1577,52                      |
| 160,22        | 1178,78                      | 93,22  | 1490,13           | 230,39 | 1570,59                      |
| 170,19        | 1171,59                      | 93,22  | 1490,59           | 240,24 | 1562,94                      |
| 180,13        | 1163,70                      | 101,98 | 1484,99           | 250,04 | 1555,30                      |
| 190,11        | 1155,24                      | 111,81 | 1479,73           | 65 ма  | acc. % LiBr                  |
| 190,12        | 1155,42                      | 122,00 | 1473,17           | 50,41  | 1809,17                      |
| 200,08        | 1147,32                      | 131,38 | 1466,98           | 60,36  | 1801,57                      |
| 210,08        | 1138,85                      | 141,37 | 1459,77           | 70,21  | 1793,89                      |
| 220,04        | 1130,16                      | 151,49 | 1452,93           | 80,03  | 1787,15                      |
| 230,03        | 1120,78                      | 151,49 | 1453,64           | 80,04  | 1786,60                      |
| 240,06        | 1111,81                      | 151,49 | 1452,72           | 89,94  | 1779,22                      |
| 250,12        | 1101,97                      | 161,87 | 1445,47           | 99,80  | 1772,88                      |
| 40 масс.      | % LiBr                       | 171,74 | 1438,84           | 110,57 | 1763,68                      |
| 21,09         | 1382,31                      | 181,86 | 1431,12           | 110,57 | 1764,13                      |
| 21,09         | 1382,11                      | 191,95 | 1424,08           | 110,58 | 1764,33                      |
| 21,78         | 1381,67                      | 201,91 | 1416,79           | 110,58 | 1764,21                      |
| 35,22         | 1376,24                      | 211,74 | 1409,25           | 110,59 | 1763,73                      |
| 50,57         | 1368,58                      | 211,75 | 1408,22           | 110,61 | 1764,50                      |
| 61,22         | 1362,36                      | 221,53 | 1401,34           | 120,61 | 1757,03                      |
| 71,25         | 1356,49                      | 231,25 | 1393,30           | 130,56 | 1749,49                      |
| 71,25         | 1357,00                      | 241,01 | 1386,38           | 130,56 | 1749,49                      |
| 81,72         | 1351,08                      | 250,79 | 1378,60           | 140,45 | 1742,64                      |
| 91,56         | 1345,41                      | 60 ма  | cc. % LiBr        | 150,31 | 1735,07                      |
| 101,94        | 1339,17                      | 21,33  | 1719,95           | 160,20 | 1727,97                      |
| 111,34        | 1333,17                      | 21,77  | 1718,69           | 170,05 | 1719,96                      |
| 120,74        | 1327,74                      | 22,36  | 1718,38           | 180,01 | 1712,82                      |
| 130,44        | 1321,42                      | 33,99  | 1710,62           | 189,98 | 1705,05                      |
| 140,83        | 1313,87                      | 49,16  | 1700,15           | 199,99 | 1696,85                      |
| 150,42        | 1307,31                      | 49,16  | 1699,44           | 212,62 | 1687,15                      |
| 160,06        | 1300,18                      | 63,74  | 1690,54           | 225,15 | 1676,90                      |
| 170,49        | 1293,46                      | 77,85  | 1681,04           | 237,68 | 1666,52                      |
| 180,43        | 1285,79                      | 77,85  | 1680,50           | 250,13 | 1656,80                      |

| <i>w</i> , масс. % | $D_0$    | $D_1$                     | $D_2$                     | $D_3$                      | $D_4$                      |
|--------------------|----------|---------------------------|---------------------------|----------------------------|----------------------------|
| 30                 | 1270,732 | $-3,377044 \cdot 10^{-1}$ | $-1,876000 \cdot 10^{-3}$ | 3,4962306.10 <sup>-6</sup> | $-5,5024736 \cdot 10^{-9}$ |
| 40                 | 1391,487 | $-4,211576 \cdot 10^{-1}$ | $-7,929983 \cdot 10^{-4}$ | $-1,4408360 \cdot 10^{-6}$ | 4,1894215·10 <sup>-9</sup> |
| 50                 | 1544,040 | $-6,019759 \cdot 10^{-1}$ | $1,010400 \cdot 10^{-3}$  | $-9,0936924 \cdot 10^{-6}$ | $1,6542387 \cdot 10^{-8}$  |
| 60                 | 1734,204 | $-7,066665 \cdot 10^{-1}$ | $4,993843 \cdot 10^{-4}$  | $-3,3279920 \cdot 10^{-6}$ | $4,7411018 \cdot 10^{-9}$  |
| 65                 | 1852,565 | $-9,531558 \cdot 10^{-1}$ | $2,334200 \cdot 10^{-3}$  | $-9,9286505 \cdot 10^{-6}$ | $1,3230282 \cdot 10^{-8}$  |

Коэффициенты D<sub>i</sub> уравнения (5)

Температурные зависимости плотности (см. табл. 3) аппроксимированы полиномами 4-й степени относительно температуры

$$\rho(t, m^*) = \sum_{i=0}^{4} D_i t^i.$$
(5)

Коэффициенты  $D_i$  приведены в табл. 4. Уравнения (5) описывают данные табл. 3 со средней дисперсией ~ 0,035 % и средними абсолютными отклонениями от 0,015 до 0,02 % (см. рис. 2), т. е. в пределах погрешностей экспериментальных данных. Значения плотности растворов, рассчитанные по уравнению (5) для целых значений температур и концентраций, приведены в табл. 5.

Сопоставление результатов, полученных гамма-методом, с экспериментальными данными других исследователей показано на рис. 3. До 100°С наши результаты хорошо согласуются с данными работ [7, 8, 9]. При w = 0,3 и 0,4 расхождения составляют от  $\pm 0,045$  % [8, 9] до  $\pm 0,05$  % [7]. Исключение представляют работы [6, 10], данные которых при низких температурах (20÷50 °С) лежат ниже на ~0,1÷0,3 %. При w = 0,5 и 0,6 расхождения с работами [6, 8, 9] увеличиваются до (0,06÷0,08) % и до -0,17 % [7].

Нам известны лишь две работы, в которых приведены экспериментальные данные о плотности водных растворов LiBr при 150 °C [6] и выше [7]. Значение плотности при 150 °C и 60 масс. %, приведенное в [6] (одна точка), на ~ 0,14 %



*Рис.* 2. Относительные отклонения измеренных значений плотности водных растворов бромида лития от аппроксимирующих зависимостей (5).

|       |           |            | Плотность, кг/м <sup>3</sup> |            |           |  |
|-------|-----------|------------|------------------------------|------------|-----------|--|
| t, °C | 30 мас. % | 40 мас. %  | 50 мас. %                    | 60 мас. %  | 65 мас. % |  |
|       | (4,9349)  | (7,676512) | (11,51477)                   | (17,27215) | (21,3847) |  |
| 20    | 1263,25   | 1382,74    | 1532,33                      | 1720,24    |           |  |
| 25    | 1261,17   | 1380,44    | 1529,49                      | 1716,80    |           |  |
| 30    | 1259,00   | 1378,10    | 1526,66                      | 1713,37    |           |  |
| 40    | 1254,43   | 1373,29    | 1521,04                      | 1706,54    | 1817,57   |  |
| 50    | 1249,56   | 1368,29    | 1515,43                      | 1699,73    | 1809,58   |  |
| 60    | 1244,40   | 1363,11    | 1509,81                      | 1692,94    | 1801,81   |  |
| 70    | 1238,97   | 1357,73    | 1504,13                      | 1686,16    | 1794,19   |  |
| 80    | 1233,27   | 1352,15    | 1498,37                      | 1679,36    | 1786,71   |  |
| 90    | 1227,33   | 1346,38    | 1492,50                      | 1672,53    | 1779,32   |  |
| 100   | 1221,15   | 1340,42    | 1486,51                      | 1665,68    | 1771,99   |  |
| 110   | 1214,73   | 1334,26    | 1480,37                      | 1658,78    | 1764,69   |  |
| 120   | 1208,09   | 1327,91    | 1474,07                      | 1651,83    | 1757,39   |  |
| 130   | 1201,24   | 1321,37    | 1467,60                      | 1644,82    | 1750,07   |  |
| 140   | 1194,16   | 1314,64    | 1460,97                      | 1637,75    | 1742,72   |  |
| 150   | 1186,88   | 1307,73    | 1454,16                      | 1630,61    | 1735,30   |  |
| 160   | 1179,39   | 1300,64    | 1447,18                      | 1623,40    | 1727,82   |  |
| 175   | 1167,76   | 1289,71    | 1436,42                      | 1612,44    | 1716,45   |  |
| 200   | 1147,32   | 1270,71    | 1417,78                      | 1593,81    | 1697,05   |  |
| 225   | 1125,50   | 1250,91    | 1398,56                      | 1574,73    | 1677,10   |  |
| 250   | 1102.19   | 1230.49    | 1379.23                      | 1555.27    | 1656.72   |  |

Плотность водных растворов LiBr<sup>\*</sup>

<sup>\*</sup> В скобках указана концентрация в моль/кг.

ниже наших данных. Результаты работы [7] получены при давлениях 10÷20 МПа и при температурах выше 150 °С имеют большой разброс (выше 1 %).



*Рис. 3.* Относительные отклонения литературных данных по плотности водных растворов бромида лития от аппроксимирующих зависимостей (5).

 $\delta \rho = \left[\frac{\rho[i]}{\rho(t)} - 1\right]$  100%,  $\rho(t)$  — уравнение (5), i — номер в списке литературы.

630

## ЗАКЛЮЧЕНИЕ

Сравнение полученных и наиболее точных литературных данных показало, что разработанная методика измерения плотности водных растворов солей гаммаметодом позволяет получать прецизионные данные в широком интервале температур и концентраций. К существенным преимуществам гамма-метода перед традиционными методиками следует отнести незначительный рост погрешностей измерений с увеличением температуры и возможность контроля распределения плотности по высоте образца. Последнее позволяет избежать систематических погрешностей, связанных с неоднородностью раствора, и тем самым повысить достоверность результатов измерений. Следует отметить, что при известной концентрации соли в растворе гамма-метод, в его абсолютном варианте, позволяет определять плотность без привлечения опорных значений, используя величины массовых коэффициентов ослабления излучения компонентов.

#### СПИСОК ЛИТЕРАТУРЫ

- **1. Millero F.J.** The Molar Volumes of Electrolytes // Chemical Reviews. 1971. Vol. 71, № 2. P. 147–176.
- 2. Станкус С.В., Хайрулин Р.А., Багинский А.В. Термодинамические и переносные свойства гексафторбензола и перфтортриэтиламина в жидком состоянии // Теплофизика и аэромеханика. — 2001. — Т. 8, № 2. — С. 317–327.
- 3. Stankus S.V., Khairulin R.A. Thermal properties of perfluorobenzene near the critical point // Int. J. of Thermophysics. 2006. Vol. 27, № 4. P. 542–550.
- **4.** Станкус С.В., Хайрулин Р.А. Измерение термических свойств платины в интервале температур 293–2300 К методом проникающего излучения // Теплофизика высоких температур. 1992. Т. 30, № 3. С. 487–494.
- Kaita Y. Thermodynamic properties of lithium-bromide-water solutions at high temperatures // Intern. J. Refrigeration. — 2001. — Vol. 24. — P. 374–390.
- 6. Колотов Я.Л., Басин А.С. Экспериментальное исследование плотности водных растворов бромистого лития при повышенных температурах // Исследование теплофизических свойств растворов и расплавов. Новосибирск, 1974. С. 5–20.
- 7. Федоров М.К., Зарембо В.И. Объемные свойства водных растворов галогенидов щелочных металлов при высоких параметрах состояния. М.: Изд-во стандартов, 1983. 24 с.
- Gmelins Handbuch der Anorganische Chemie, 8 Aufgabe, Bd. Lithium-System Number 20, Verlag Chemie, Weinheim, 1960. — 525 s.
- 9. Барон Н.М. Зависимость кажущегося молярного объема некоторых солей от концентрации и температуры // Работы в области физической и коллоидной химии: Тр. ЛТХИ им. Ленсовета, Вып. 37. Госхимиздат, 1957. С. 19–29.
- Löwer H. Thermodynamische und physikalische Eigenschaften der wässerigen Lithium-Bromid Lösung: Diss. — Karlsruhe, 1960.
- Mc Neely L.A. Thermodynamic properties of aqueous solutions of lithium bromide // ASHRAE Transactions. — 1979. — Vol. 85, Pt 1. — P. 413–434.
- 12. Joly R.D., Perachon G. Contribution a la connaissance de la structure des solutions (systemes ternaires halogenure alcalin-eau-acide halogene correspondant) // Thermochimica Acta. 1977. Vol. 21. P. 333–347.
- 13. Верба О.И., Груздев В.А., Захаренко Л.Г. и др. Термодинамические свойства водных растворов бромистого лития // Холодильная техн. 1986. № 3. С. 44–49.
- 14. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонентных растворов неорганических веществ // Справочник. — М.: Химия, 1988. — 416 с.
- 15. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара // Справочник. — М.: Изд. МЭИ, 1999. — 168 с.
- **16.** Вукалович М.П., Ривкин С.Л., Александров А.А. Таблицы теплофизических свойств воды и водяного пара. М.: Изд. стандартов, 1969. 408 с.

Статья поступила в редакцию 20 июля 2006 г.