2016. Том 57, № 2

Февраль – март

C. 292 – 297

УДК 543.429.23:546.36'815'773

Посвящается 80-летию профессора С.П. Габуды

ЭЛЕКТРОННАЯ СТРУКТУРА И КВАДРУПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ В ТРОЙНЫХ МОЛИБДАТАХ $Li_2M_3Al(M_0O_4)_4$, M = Cs, Rb

В.Н. Селезнев¹, Н.И. Медведева², Т.А. Денисова², Р.Д. Невмывако², А.Л. Бузлуков³, Ю.М. Кадырова⁴, С.Ф. Солодовников^{5,6}

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

²Институт химии твердого тела УрО РАН, Екатеринбург, Россия

E-mail: secretary@ihim.uran.ru

³Институт физики металлов УрО РАН им. М.Н. Михеева, Екатеринбург, Россия

⁴Байкальский институт природопользования СО РАН, Улан-Удэ, Россия

⁵Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

⁶Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 15 сентября 2015 г.

В рамках теории функционала электронной плотности впервые исследована электронная структура тройных молибдатов Li₂ M_3 Al(MoO₄)₄, где M = Cs, Rb. Установлено, что все исследованные молибдаты относятся к широкозонным диэлектрикам с величиной запрещенной щели ~4 эВ. Рассчитаны величины квадрупольных частот и параметров асимметрии градиента электрического поля вблизи магнитных ядер ⁷Li, ²⁷Al, ⁸⁷Rb, ¹³³Cs, проведена интерпретация экспериментальных спектров ЯМР.

DOI: 10.15372/JSC20160205

Ключевые слова: тройные молибдаты, электронная структура, квадрупольные взаимодействия, ЯМР ⁷Li, ²⁷Al, ⁸⁷Rb, ¹³³Cs.

введение

Тройные молибдаты Li₂M₃Al(MoO₄)₄ (M = Cs, Rb, Tl) образуются в системах Li₂MoO₄— M_2MoO_4 —Al₂(MoO₄)₃. Соединения Li₂Cs₃Al(MoO₄)₄ и Li₂Rb₃Al(MoO₄)₄ плавятся при 701 и 600 °C соответственно и обладают ионной проводимостью, значения которой при 300 °C составляют ~ $3 \cdot 10^{-8}$ Om⁻¹·cm⁻¹ ($E_{akr} = 1,84$ —2,23 эВ). Ионная проводимость третьего представителя этой группы фаз — Li₂Tl₃Al(MoO₄)₄ — при 350 °C достигает величины 2,5 · 10⁻² Om⁻¹·cm⁻¹ при достаточно низкой энергии активации (0,88 эВ), что приближает его к суперионным проводникам. Скачок проводимости связан с фазовым переходом I рода [1].

Для дальнейшего изучения возможностей применения этого семейства соединений необходимо иметь более полные сведения об их структуре и свойствах. Одним из наиболее точных методов изучения локальной структуры является метод ядерного магнитного резонанса (ЯМР) [2,3]. Получаемые из спектров ЯМР квадрупольные частоты позволяют определить тензор квадрупольных взаимодействий и тензор градиентов электрического поля (ГЭП) на ядрах. Тензор ГЭП содержит информацию о структуре кристалла и распределении электронной плотности вблизи ядра. Даже небольшие изменения координат атомов приводят к заметному изменению градиентов электрического поля, что позволяет с высокой точностью делать выводы о структурных и электронных свойствах изучаемых соединений, например, о фазовых перехо-

[©] Селезнев В.Н., Медведева Н.И., Денисова Т.А., Невмывако Р.Д., Бузлуков А.Л., Кадырова Ю.М., Солодовников С.Ф., 2016

дах, локальном упорядочении при замещении одних атомов другими, о динамике атомов и отдельных их групп в кристалле и т.д. Однако корреляция между наблюдаемыми квадрупольными частотами и микроскопическими характеристиками не является прямой и требуется построение моделей или проведение теоретических расчетов. Следует отметить, что электронная структура тройных молибдатов до настоящего времени не исследовалась.

В работе представлены результаты экспериментальных ЯМР исследований и теоретических расчетов электронной структуры и параметров квадрупольного взаимодействия в тетрагональных молибдатах $Li_2M_3Al(MoO_4)_4$, где M = Cs, Rb.

ЭКСПЕРИМЕНТ И МЕТОДИКА РАСЧЕТА

Соединения получены отжигом стехиометрических смесей простых молибдатов при 450— 500 °С в течение 40—60 ч. Однофазность продуктов синтеза контролировали рентгенографически (автодифрактометр D8 Advance фирмы Bruker, λCuK_{α} , вторичный монохроматор, $2\theta_{max} = 100^{\circ}$, шаг сканирования 0,02076°).

Спектры ЯМР записаны при комнатной температуре на импульсном спектрометре Agilent VNMR 400 на частотах 104,2 МГц (27 Al), 155,44 МГц (7 Li), 130,87 МГц (87 Rb) и 52,43 МГц (133 Cs) в статическом одноимпульсном режиме и при вращении под магическим углом (MAS). Скорость вращения ротора 10 кГц. Величины химических сдвигов для ядер ⁷Li определены относительно 9,7M LiCl, для ядер 27 Al — относительно 1,1M Al(NO₃)₃, для ядер 87 Rb — относительно 0,01M RbCl, для ядер 133 Cs — относительно 0,1M CsNO₃. Анализ спектров ЯМР проведен с использованием программного пакета DMFIT [4].

Тройные молибдаты Li₂ M_3 Al(MoO₄)₄ являются производными кубической структуры Cs₆Zn₅(MoO₄)₈ и получаются в результате упорядоченного размещения катионов Li⁺ и Al³⁺ по позициям цинка, что приводит к понижению симметрии соединения до тетрагональной (пространственная группа $I\bar{4}2d$, Z=4) [5, 6]. Как и в исходном соединении, основу структуры составляют тетраэдры: LiO₄, AlO₄ и MoO₄. Атомы Li, Al и Мо имеют по одной кристаллографической позиции, атомы Cs (Rb) занимают две кристаллографические позиции. Структурные данные для Li₂ M_3 Al(MoO₄)₄ (M =Cs, Rb) [1] представлены в табл. 1.

Расчеты электронной структуры и параметров квадрупольного взаимодействия проведены методом проекционных присоединенных волн (PAW — projector augmented wave) с использованием пакета Vienna Ab initio Simulation Package (VASP) [7,8] и обобщенным градиентным приближением для обменно-корреляционного потенциала [9]. Интегрирование в зоне Бриллюэна проводили по $6 \times 6 \times 6$ *k*-точкам, кинетическая энергия обрезания (cutoff) выбрана равной 500 эВ. Тензор градиента электрического поля рассчитывается из зарядовой плотности, после

	Т	а	б	Л	И	Ц	а	1
--	---	---	---	---	---	---	---	---

						· ·	
Атом		M = Rb		M = Cs			
	x	У	Z	x	У	Z	
<i>M</i> 1	0	0	0	0	0	0	
<i>M</i> 2	0,3644	0,25	0,125	0,3638	0,25	0,125	
Mo	0,1019	0,1437	0,2733	0,095	0,1506	0,2808	
Al	0	0	0,5	0	0	0,5	
Li	-0,1231	0,25	0,125	-0,1235	0,25	0,125	
O1	0,0922	0,0763	0,4139	0,0819	0,0863	0,4165	
O2	-0,0304	0,01495	0,2099	-0,0316	0,16	0,2165	
O3	0,1877	0,0625	0,1891	0,17	0,0711	0,1988	
O4	0,1616	0,2774	0,2807	0,1556	0,2792	0,2913	

Координаты базисных атомов в кристаллических структурах Li₂Cs₃Al(MoO₄)₄ (a = 12,2168, c = 12,0951 Å, Z = 4) u Li₂Rb₃Al(MoO₄)₄ (a = 11,8948, c = 11,7981 Å, Z = 4)

диагонализации главные компоненты упорядочены: $|V_{zz}| > |V_{xx}| > |V_{yy}|$, где максимальная компонента V_{zz} определяет значение градиента электрического поля, а параметр асимметрии определяется как $\eta_q = \frac{V_{yy} - V_{xx}}{V_{zz}}$. Квадрупольная частота связана с *z*-компонентой диагонализирован-

ного тензора ГЭП соотношением $v_q = \frac{3e^2 Q V_{zz}}{2I(2I-1)h}$, где e — заряд электрона; h — постоянная

Планка; Q — ядерный электрический квадрупольный момент; I – спин ядра. Для изотопов ⁸⁷Rb, ¹³³Сs, ⁷Li и ²⁷Al спины ядер равны 3/2, 7/2, 3/2 и 5/2, квадрупольные моменты равны 0,13, -0,003, -0,04 и 0,15 барн [10] соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Li₂Rb₃Al(MoO₄)₄ Электронная молибдатов структура тетрагональных и Li₂Cs₃Al(MoO₄)₄. Рассчитанные парциальные плотности состояний молибдатов приведены на рис. 1. Верхняя валентная полоса (интервал от -4,5 до 0 эВ) разделена на две подполосы, отделенных запрещенной щелью около 0,5 эВ. Низкоэнергетическая полоса от -4,5 до -3,0 эВ обусловлена гибридизацией Мо 4d, Al 3p, Li 2s,2p и O 2p состояний. Полоса от -2,5 до 0 эВ содержит в основном состояния Li 2s, 2p и O 2p, вклад электронов молибдена и алюминия в этой области мал. Потолок запрещенной зоны составляют слабосвязанные 2р-состояния атомов кислорода О2, О3 и О4. Электроны в зоне проводимости принадлежат 4d-оболочке молибдена и в меньшей степени 2s- и 2p-оболочкам лития. Антисвязывающие 2p-состояния всех атомов кислорода также дают небольшой вклад в плотность вблизи дна зоны проводимости. Вклады *p*- и *s*-состояний рубидия и цезия малы и не показаны на рис. 1. Основное отличие при переходе от Li₂Rb₃Al(MoO₄)₄ к Li₂Cs₃Al(MoO₄)₄ состоит в том, что пик алюминия в валентной полосе стал заметно шире, а лития — интенсивнее. Величина запрещенной щели равна 4,26 и 4,32 эВ в $Li_2Rb_3Al(MoO_4)_4$ и $Li_2Cs_3Al(MoO_4)_4$ соответственно.

Градиенты электрического поля в Li₂Rb₃Al(MoO₄)₄ и Li₂Cs₃Al(MoO₄)₄. Рассчитанные компоненты тензора ГЭП приведены в табл. 2. Максимальная компонента тензора ГЭП на ядре Rb1 в Li₂Rb₃Al(MoO₄)₄ направлена вдоль кристаллографической оси z, а недиагональные компоненты малы. На ядре Rb2 максимальная компонента тензора ГЭП направлена вдоль оси у и большое значение имеет недиагональная компонента V_{xz}. Тензор ГЭП на ядрах алюминия и лития почти симметричен ($V_{xx} = V_{yy}$) и максимальная компонента направлена вдоль оси z, аналогично Rb1. Все недиагональные компоненты малы вблизи ядра алюминия, но для лития V_{xz} сопоставима по величине с диагональными компонентами.

Рис. 1. Парциальные плотности состояний для $Li_2Rb_3Al(MoO_4)_4$ (a) и $Li_2Cs_3Al(MoO_4)_4$ (б)

Таблица 2

		1		· · · ·					
Ядро	V_{xx}	V_{yy}	V_{zz}	V _{zz} V _{xy}		V_{yz}			
Li ₂ Rb ₃ Al(MoO ₄) ₄									
Rb1	7,139	7,139	-14,278	-0,033	-0,033	-0,033			
Rb2	7,409	-12,483	5,074	-0,031	-4,363	-0,030			
Al	2,484	2,485	-4,969	-0,040	-0,039	-0,033			
Li	-0,222	-0,209	0,431	-0,008	-0,302	-0,010			
Li ₂ Cs ₃ Al(MoO ₄) ₄									
Cs1	5,550	5,549	-11,099	-0,064	-0,064	-0,064			
Cs2	8,238	-8,395	0,157	-0,066	-6,910	-0,063			
Al	2,022	2,023	-4,044	-0,053	-0,056	-0,043			
Li	-0,120	-0,319	0,439	-0,018	-0,274	-0,025			

Рассчитанные компоненты тензора ГЭП (B/Å²) в кристаллографических осях на магнитных ядрах в Li₂Rb₃Al(MoO₄)₄ и Li₂Cs₃Al(MoO₄)₄

Таблица З

Компоненты тензора ГЭП (B/Å²) в главных осях на магнитных ядрах в Li₂Rb₃Al(MoO₄)₄ и Li₂Cs₃Al(MoO₄)₄

Ядро	V_{xx}	V_{yy}	V_{zz}	Ядро	V_{xx}	V_{yy}	V_{zz}	
Li ₂ Rb ₃ Al(MoO ₄) ₄				Li ₂ Cs ₃ Al(MoO ₄) ₄				
Rb1	7,172	7,106	-14,278	Cs1	5,614	5,486	-11,100	
Rb2	10,758	1,725	-12,483	Cs2	-8,397	-3,805	12,202	
Al	2,525	2,445	-4,969	Al	2,076	1,969	-4,045	
Li	-0,341	-0,208	0,549	Li	-0,326	-0,225	0,551	

В Li₂Cs₃Al(MoO₄)₄ сохраняется приблизительно такая же симметрия тензора ГЭП, как и в Li₂Rb₃Al(MoO₄)₄ — максимальная компонента тензора ГЭП на ядрах Cs1, Al и Li направлены вдоль оси z, а на ядре Cs2 направлена вдоль оси y. Наиболее существенные отличия наблюдаются для тензора ГЭП на ядре Cs2, где существенно уменьшаются компоненты V_{yy} и V_{zz} , но увеличиваются V_{xx} и V_{xz} .

Компоненты тензора после диагонализации приведены в табл. 3, где даны значения в главных осях и максимальная компонента (градиент электрического поля) принята как V_{zz} . Максимальные значения ГЭП, полученные на ядрах рубидия (цезия), примерно одинаковы для двух кристаллографически неэквивалентных позиций Rb1 (Cs1) и Rb2 (Cs2), но ГЭП меняет знак в случае Cs2. Эти позиции 1 и 2 характеризуются различными значениями параметра асимметрии. Компоненты V_{xx} и V_{yy} равны для Rb1 (Cs1), что приводит к нулевому параметру асимметрии, а большое различие компонент V_{xx} и V_{zz} обусловливает высокое значение параметра асимметрии для Rb2 (Cs2). Как видно из рис. 2, близкий к нулю параметр асимметрии для позиции Rb1 (Cs1) обусловлен симметричным ближайшим окружением четырех атомов лития и восьми атомов молибдена. В случае Rb2 (Cs2) в ближайшем окружении находится также восемь атомов молибдена и по два атома лития и алюминия, что создает сильную асимметрию зарядового распределения вблизи ядра.

Каждый из атомов Li и Al окружен тетраэдром из четырех атомов кислорода. Окружение алюминия более симметрично (см. табл. 3), кислородный тетраэдр состоит из атомов одного типа O1, параметр асимметрии, соответственно, близок к нулю. Литий окружен атомами кислорода в двух различных кристаллографических позициях (O2 и O4) и тетраэдр более искажен.

Таким образом, при переходе от Li₂Rb₃Al(MoO₄)₄ к Li₂Cs₃Al(MoO₄)₄ происходит уменьшение значения ГЭП для позиции 1 рубидия (цезия) и смена знака для позиции 2, а значения и знак ГЭП на ядрах лития и алюминия меняются мало.

Рис. 2. Металлическое окружение атомов рубидия в различных кристаллографических позициях Rb1 и Rb2

Ранее в работах [11, 12] нами были опубликованы спектры ЯМР на ядрах ²⁷Al, ⁷Li, ⁸⁷Rb и ¹³³Cs. В настоящей работе мы, опираясь на данные квантово-химических расчетов, сделали основной акцент на интерпретации спектров ЯМР ⁸⁷Rb и ¹³³Cs, которые имеют сложный вид вследствие наличия двух кристаллографических позиций и наложения квадрупольных эффектов в соответствии со спином ядра и его квадрупольным моментом. Результаты такого анализа представлены на рис. 3 и в табл. 4.

Наилучшее согласие между теоретическими и экспериментальными параметрами ГЭП получено для ядер алюминия, положение которых в структуре слабо зависит от температуры. Рассчитанные и экспериментальные величины параметров ГЭП на ядрах ⁸⁷Rb и ¹³³Cs также достаточно хорошо коррелируют между собой. Для легких ядер лития расхождение в значениях v_Q и η более значительно вследствие большей зависимости положения ионов Li⁺ от температуры и, как следствие, их большей подвижности (*ab initio* расчеты проведены при 0 K).

выводы

С использованием неэмпирического метода функционала электронной плотности впервые исследована электронная структура тетрагональных тройных молибдатов Li₂ M_3 Al(MoO₄)₄ (M= Cs, Rb). Установлено, что исследованные молибдаты относятся к широкозонным диэлектрикам с величиной запрещенной щели ~4 эВ, в которых потолок валентной зоны составляют слабосвязанные 2*p*-состояния атомов кислорода, а дно зоны проводимости обусловлено 4*d*-состояниями молибдена. Рассчитаны величины квадрупольных частот v_Q и параметров асимметрии η ГЭП вблизи магнитных ядер ⁷Li, ⁸⁷Rb, ¹³³Cs, ²⁷Al, проведена интерпретация экспериментальных спектров ЯМР.

Puc. 3. Экспериментальные статические спектры ЯМР на ядрах ⁸⁷Rb (*a*) и ¹³³Cs (δ) в Li₂Rb₃Al(MoO₄)₄ и Li₂Cs₃Al(MoO₄)₄ соответственно. Пунктиром обозначены рассчитанные компоненты спектров

Таблица 4

Молиблот	U TRO	Параметр	Расчет		Эксперимент	
молиодат	лдро		<i>M</i> 1	M2	<i>M</i> 1	M2
Li ₂ Rb ₃ Al(MoO ₄) ₄	⁸⁷ Rb	ν ₀ , МГц	1,531	1,324	1,489	1,372
		$\tilde{\eta}_Q$	0,004	0,650	0,13	0,64
		δ, м.д.			-186,07	-71,23
		<i>S</i> ,%	33,3	66,7	34	66
	⁷ Li	ν _Q , МГц	0,034		0,012	
		η_Q	0,65		0	
	²⁷ Al	ν _Q , МГц	0,208		0,246	
		η_Q	0,	17	0,20	
Li ₂ Cs ₃ Al(MoO ₄) ₄	¹³³ Cs	ν _Q , МГц	0,0056	0,0061	0,0041	0,0067
		η_Q	0,012	0,385	0,01	0,36
		δ, м.д.	—	—	-139,69	-80,44
		<i>S</i> ,%	33,3	66,7	38	62
	⁷ Li	ν _Q , МГц	0,025		0,013	
		η_Q	0,25		0,43	
	²⁷ Al	ν _Q , МГц	0,199		0,210	
			0,20		0,25	

Рассчитанные и экспериментальные значения квадрупольных частот (v_Q) , параметров асимметрии (η) , заселенностей позиций (S) и химического сдвига* (δ) сложных молибдатов Li₂Rb₃Al(MoO₄)₄ и Li₂Cs₃Al(MoO₄)₄

* Приведены только экспериментальные значения химического сдвига.

Работа выполнена при поддержке проектов "Комплексной программы фундаментальных исследований УрО РАН" (№ 15-17-23-31, 15-17-3-44).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кадырова Ю.М.* Фазообразование, синтез и строение новых соединений в системах M_2 MoO₄— R_2 (MoO₄)₃ и Li₂MoO₄— M_2 MoO₄— R_2 (MoO₄)₃ (M— щелочной металл; R = In, Sc, Fe, Ga, Cr, Al). Дис. канд. хим. наук. Улан-Удэ, 2010.
- 2. Габуда С.П., Плетнев Р.Н., Федотов М.А. Ядерный магнитный резонанс в неорганической химии. М.: Наука, 1988.
- 3. Габуда С.П., Плетнев Р.Н. Применение ЯМР в химии твердого тела. Екатеринбург: изд-во Екатеринбург, 1996.
- 4. Massiot D.F.F., Capron M., King I. et al. // Magn. Res. Chem. 2002. 40. P.70.
- 5. Солодовников С.Ф., Хайкина Е.Г., Солодовникова З.А. и др. // Докл. РАН. 2007. **416**. С. 60.
- 6. Солодовников С.Ф., Хайкина Е.Г., Солодовникова З.А. // Журн. структур. химин. 2009. 50. С. S85.
- 7. Kresse G., Furthmuller J. // J. Phys. Rev. B. 1996. 54. P. 11169.
- 8. Kresse G., Hafner J. // J. Phys.: Condens. Matter. 1996. 6. P. 8245.
- 9. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. 77. P. 3865.
- 10. Raghavan P. // Atomic Data and Nuclear Data Tables. 1989. 42. P. 189.
- Невмывако Р.Д., Журавлев Н.А., Денисова Т.А. и др. // Труды XVI Междунар. междисциплинарного симпоз. "Упорядочение в минералах и сплавах". ОМА-16. 2013. – вып. 16. Т.1. – Ростов-на-Дону: Северо-Кавказский научный центр высшей школы ФГАОУ ВПО "Южный федеральный университет". – С. 134.
- 12. *Невмывако Р.Д., Журавлев Н.А., Денисова Т.А. и др.* // Изв. РАН. Сер. физическая. 2014. **78**, № 4. С. 403.