2016. Том 57, № 4

Май – июнь

C. 815 – 821

УДК 547.539.1:548.737

СУПРАМОЛЕКУЛЯРНАЯ АРХИТЕКТУРА КРИСТАЛЛОВ ПЕРФТОРИРОВАННЫХ 3-АЛКИЛФТАЛИДОВ

Т.В. Рыбалова^{1,2}, Ю.В. Гатилов^{1,2}, Я.В. Зонов^{1,2}, В.М. Карпов¹

¹Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, Россия E-mail: gatilov@nioch.nsc.ru ²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 25 июня 2015 г.

Методом РСА установлена молекулярная и кристаллическая структура перфтор-3алкилфталидов: 3-гидроксиперфтор-3-метилфталида и его гидрата, двух полиморфных модификаций 3-гидроксиперфтор-3-этилфталида и 3-гидроксиперфтор-3-изопропилфталида. В кристаллах реализуется супрамолекулярный синтон О—Н...О=С, приводящий, кроме кристаллогидрата, к образованию водородносвязанных цепочек $C_1^1(6)$ (супрамолекулярные 1D мотивы). Согласно DFT/M06-2X/TZV расчетам, энергия взаимодействия водородносвязанных пар молекул возрастает в этом ряду, что можно объяснить дополнительными взаимодействиями С=О... π , О... π и С—F... π .

DOI: 10.15372/JSC20160422

Ключевые слова: 3-гидрокси-перфтор-3-алкилфталиды, рентгеноструктурный анализ, межмолекулярные взаимодействия, квантово-химические расчеты, супрамолекулярная архитектура, полиморфы.

введение

Водородные связи широко распространены в химии, биологии, инженерии кристаллов [1—3]. При этом в кристаллах соединений представлен широкий спектр различных водородных связей, энергия которых лежит в интервале от 0,25 до 40 ккал/моль [4]. В работе Дезираджу для них был предложен более широкий термин "водородные мосты" [5]. Известно, что замена атомов водорода на фтор может существенно менять свойства соединений, влиять на внутри- и межмолекулярные взаимодействия [6]. Целью данной работы является изучение молекулярной структуры и супрамолекулярной архитектуры перфтор-3-алкилфталидов: 3-гидроксиперфтор-3-метилфталида (1) и его гидрата (1а), двух полиморфных модификаций 3-гидроксиперфтор-3-этилфталида (2) и 3-гидроксиперфтор-3-изопропилфталида (3).

В Кембриджской базе структурных данных (КБСД) [7] содержится информация о кристаллической структуре более трехсот соединений, содержащих фталидный фрагмент. При этом следует отметить, что среди этих соединений только три имеют атомы фтора в бензоль-

[©] Рыбалова Т.В., Гатилов Ю.В., Зонов Я.В., Карпов В.М., 2016

ном цикле [8—10]. Отметим также, что КБСД содержит 18 производных 3-гидроксифталида, среди которых только 3-трифторметил-3-гидроксифталид [11] включает атомы фтора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение монокристаллов соединений 1—3

Соединение 1. Монокристаллы соединения 1, синтезированного в работе [12], получали при медленном испарении гексана из раствора соединения 1.

Гидрат соединения 1. Получали кристаллизацией из воды.

Соединение 2 получено в работе [13].

Полиморф 2а получали при медленном испарении хлористого метилена из раствора соединения 2.

Полиморф 26 получали при испарении растворителя из раствора соединения **2** в смеси вода—ацетон (100:3 по весу).

Соединение 3. Монокристаллы синтезированного в работе [14] соединения 3 получали возгонкой в запаянной ампуле при 60 °С (760 мм).

Рентгеноструктурный анализ. Рентгеноструктурное исследование соединений 1, 2а, 26 провели на дифрактометре Bruker P4 (Мо K_{α} -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование), соединений 1а и 3 — на дифрактометре Bruker Карра АРЕХ II (Мо K_{α} -излучение, графитовый монохроматор, CCD-детектор, φ , ω -сканирование). Ввели поправку на поглощение эмпирическим методом (ψ -сканирование) для соединения 2а, по огранке кристалла для соединения 2б и по программе SADABS для соединений 1а и 3. Структуры расшифровали прямым методом по программе SHELXS-97 и уточнили методом наименыших квадратов в анизотропном (изотропном для атомов H) приближении по программе SHELXL-97. Положения атомов водорода гидроксильных групп и молекулы воды взяли из разностного синтеза. Кристаллографические данные соединений 1—3 и параметры рентгенодифракционных экспериментов приведены в табл. 1. Координаты и геометрические параметры структур депонированы в Кембриджскую базу структурных данных, депозиционные номера CCDC 1408030-1408034. Данные доступны бесплатно по запросу через сайт www.ccdc.cam.ac.uk/data request/cif.

Квантово-химические расчеты

Для оценки энергии межмолекулярного взаимодействия методом DFT мы использовали гибридный функционал M06-2X/TZV [15] (программа GAMESS [16]), учитывающий дисперсионную составляющую энергии, пригодность которого для наших целей была показана в работе Шишкина и сотрудников [17].

Точечные расчеты энергии выполнены с использованием кристаллических координат неводородных атомов. Координаты атомов водорода пересчитывались для значений длин связей О—Н 0,993 Å с сохранением значений валентных углов при атоме О. Рассматривались молекулярные пары, образованные каждой молекулой независимой части ячейки с ее соседями из первой координационной сферы, генерируемые программой MERCURY [18].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристалл соединения 1 состоит из одного энантиомера, а кристаллы его гидрата 1а и соединений 2, 3 — из смеси обоих энантиомеров. Молекулярная структура соединений 1—3 представлена на рис. 1. Геометрия молекул соединения 1 в кристаллогидрате 1а и соединения 2 в ромбической полиморфной модификации 26 очень близка к таковой для кристаллов 1 и 2а соответственно.

Длины связей соединений 1—3 близки к среднестатистическим значениям [19]. Сравнивая длины связей перфторфталида 1 с нефторированным аналогом 3-гидрокси-3-метилфталидом 4 [20], отметим небольшое различие длин связей во фрагменте HO—C—O—C=O: 1,355— 1,458—1,362—1,194 (здесь и далее берутся средние значения для гомокристалла и кристалло-

Таблица 1

Присталюграфические оанные и параметры уточнения соеоинении 1—3								
Параметр	1	1a	2a	26	3			
Формула	$C_9HF_7O_3$	C ₉ HF ₇ O ₃ , H ₂ O	$C_{10}HF_9O_3$	$C_{10}HF_9O_3$	$C_{11}HF_{11}O_3$			
Мол. масса	290,10	308,11	340,11	340,11	390,12			
Сингония	Ромбоэдрическая	Моноклинная	Моноклинная	Ромбическая	Моноклинная			
Пр. гр.; <i>Z</i>	R3; 9	$P2_{1}/c; 4$	$P2_{1}/c; 4$	Pbca; 8	$P2_1/n; 4$			
Температура, К	296	200	296	296	150			
<i>a</i> , Å	19,804(2)	6,6973(2)	10,5591(6)	9,3588(6)	10,5754(4)			
<i>b</i> , Å	19,804(2)	17,4775(6)	9,2974(5)	11,3744(8)	8,2371(2)			
<i>c</i> , Å	6,617(1)	9,2647(3)	11,2620(5)	20,367(1)	13,7790(5)			
α, град.	90			90				
β, град.	90	101,454(1)	103,772(3)	90	94,953(1)			
ү, град.	120			90				
$V, Å^3$	2247,3(6)	1062,85(6)	1073,8(1)	2168,1(2)	1195,81(7)			
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1,929	1,926	2,104	2,084	2,167			
μ, мм ⁻¹	0,225	0,224	0,252	0,250	0,265			
θ _{макс} , град.	25	27	27	28	28			
Полнота	0,999	0,998	0,999	1,000	0,994			
<i>I_{hkl}</i> изм. / незав.	2470 / 964	12343 / 2342	2465 / 2341	2622 / 2620	13821 / 2949			
$R_{\text{int}} / I_{hkl} > 2\sigma(I)$	0,1017 / 913	0,0282 / 2024	0,0118 / 2072	0,1556 / 1975	0,0543 / 2357			
$N_{ m nap}$ / S	177 / 1,102	194 / 1,071	204 / 1,064	204 / 1,024	230 / 1,041			
$R_1 / wR_2 (I > 2\sigma)$	0,0384 / 0,0941	0,0333 / 0,0868	0,0348 / 0,0979	0,0388 / 0,1024	0,0368 / 0,0974			
R_1 / wR_2	0,0399 / 0,0960	0,0398 / 0,0923	0,0398 / 0,1023	0,0552 / 0,1127	0,0488 / 0,1076			

Кристаллографические данные и параметры уточнения соединений 1—3

гидрата (1a) соединения 1) и 1,379—1,483—1,339—1,204 Å для соединения 4. Введение объемной перфторизопропильной группы при атоме C3 приводит к небольшому удлинению связей C3—C10, C3—C9, C3—O2 во фталиде 3 до 1,569(2), 1,521(2), 1,471(2) Å по сравнению с длинами соответствующих связей 1,541, 1,512, 1,458 Å соединения 1. Гидрофурановые циклы исследованных соединений практически плоские, максимальное отклонение 0,114(3) Å атома O2 от плоскости остальных атомов наблюдается в соединении 3. Ориентация гидроксильной группы в соединениях 1—3 трансоидная по отношению к 3-алкильным заместителям, торсионный угол HO3C3C10 находится в интервале 154(2)—174(2)°. Такая же ориентация OH-группы наблюдается в ближайших аналогах в 3-гидрокси-3-утил-4-метилфталиде [21] и в 3-гидрокси-3-циано-

Рис. 1. Строение молекул соединений 1—3, эллипсоиды теплового смещения представлены с 50%-ой вероятностью

Таблица 2

Кристалл	0—НО	O—H, Å	HO, Å	00, Å	∠О—Н…О, град.
1	03—H…01	0,96(5)	1,83(5)	2,721(5)	154(4)
1a	O3—HO1S*	0,89(3)	1,71(3)	2,582(2)	170(2)
	01S—H101	0,78(4)	2,36(4)	2,960(2)	135(3)
	01S—H201	0,83(4)	2,35(4)	3,041(2)	141(3)
2a	O3—HO1	0,79(2)	2,00(2)	2,784(2)	172(2)
26	O3—HO1	0,82(3)	1,96(3)	2,774(2)	177(3)
3	O3—HO1	0,76(2)	1,99(2)	2,724(2)	163(2)

Параметры межмолекулярных водородных связей

* O1S — молекула воды.

метилфталиде [22], в то время как в 3-гидрокси-3-метилфталиде [20, 23] и в 3-гидрокси-3этил-7-метилфталиде [24] ОН-группа *транс*-ориентирована по отношению с атому С9. Согласно газофазным DFT/PBE/3z расчетам соединений **1**—3, наиболее стабильной является *транс*ориентация группы О—Н по отношению к атому С9, а ориентация, наблюдаемая в кристалле, менее стабильна на 1,9 для соединения **1**, 1,6 для **2** и 3,6 ккал/моль для **3**. Вероятно, образование в кристалле межмолекулярных водородных связей типа ОН...О определяет ориентацию гидроксильной группы. Отметим, что ориентация перфторэтильной группы соединения **2** одинакова в газе и в кристалле, а ориентация перфторизопропильной группы соединения **3** отличается: торсионный угол F5C10C3O2 равен –164,3° в газе и 48,9(1)° в кристалле.

Среди 18 3-гидроксифталидов из КБСД димеры за счет водородных связей О—Н...О=С (граф $R_2^2(12)$ [3]) образуются только в двух случаях [25, 26], в девяти случаях наблюдаются водородносвязанные цепочки характеризуемых графом $C_1^1(6)$, и в остальных случаях в образовании основных супрамолекулярных мотивов участвуют дополнительные функциональные группы. В кристаллах **1**—**3**, как и ожидалось, также реализуется супрамолекулярный синтон О—Н...О=С [1, 2], приводящий, кроме кристаллогидратов **1а**, к образованию водородносвязанных цепочек $C_1^1(6)$ типа голова—хвост (рис. 2—4). Параметры водородных связей приведены в табл. 2.

В кристалле 1 молекулы организованы в водородносвязанные спиральные цепочки вокруг винтовой оси 3_1 (рис. 2) с энергией взаимодействия молекулярной пары $E_{\rm MII}$ –8,4 ккал/моль.

Рис. 2. Винтовые цепочки вдоль оси 3_1 соединения **1** (*a*) и фрагмент упаковки кристалла **1a** (б)

Рис. 3. Фрагменты упаковок молекул полиморфа **2a** (a) и полиморфа **2б** (b)

Цепочки попарно встраиваются друг в друга со сдвигом, равным половине шага спирали, образуя двойные спирали, в которых атомы кислорода ориентированы внутрь, а атомы фтора — наружу, образуя на поверхности двойной спирали, за исключением атома F6 CF₃-группы, фторагрегат [27]. В двойных спиралях между цепочками имеются взаимодействия, характеризуемые сокращенными [28] контактами: F1...F5 2,830(4) Å (сумма ван-дер-ваальсовых радиусов (ВДВР) 2,92 Å) с $E_{M\Pi} = -5,7$ ккал/моль и O2...C7 3,087(6) Å (сумма ВДВР 3,35 Å) с $E_{M\Pi} = -4,1$ ккал/моль. Двойные спирали находятся в окружении шести соседей, связываясь с ними сокращенными контактами F6...C4 3,084(6) Å (сумма ВДВР 3,23 Å) с $E_{M\Pi} = -4,4$ ккал/моль.

В кристаллах обеих полиморфных модификаций соединения 2 посредством водородной связи образуются зигзагообразные цепочки типа голова-хвост с практически равным углом между плоскостями фталидных фрагментов молекул 73 и 74° для моноклинной и орторомбической модификаций (рис. 3). Однако, если в моноклинной модификации молекулы в цепочке связаны винтовой осью симметрии, и соседние молекулы развернуты в противоположные стороны в проекции вдоль оси цепочки, параллельной b, то в ромбической модификации молекулы в цепочке связаны плоскостью скользящего отражения, и в проекции вдоль оси цепочки, параллельной а, соседние молекулы развернуты одинаково. Энергии взаимодействия водородносвязанных молекулярных пар также практически одинаковы и равны –11,6 и –11,2 ккал/моль для моноклинного 2а и ромбического 26 полиморфов соответственно. Более высокое в сравнении с 1 значение *E*_{MII} объясняется, по-видимому, дополнительным C1=O1...*π* слабым [29] взаимодействием в паре с расстоянием О...центроид 3,808(2) Å для 2a и 3,880(2) Å для 2б. Заметим, что и в случае ранее изученных нами полиморфных модификаций сокристаллов 2-амино-1,1,4,5,6,7-гексафтор-3-трифторацетилиндена с 1,4-диоксаном [30] энергии взаимодействия и геометрические параметры взаимодействия водородносвязанных пар полиморфов также очень близки. В полиморфе 2а водородносвязанные молекулярные цепочки образуют слои посредством взаимодействий, характеризуемых контактами F4...C7 3,004(2), E_{MII} -5,1; C4...F9 3,095(2), $E_{\rm MII}$ –4,5; O2...F7 2,999(2), $E_{\rm MII}$ –3,7; C—F8... π F...центроид 3,681(2)Å, $E_{\rm MII}$ -3,5 ккал/моль, с межслоевым контактом F2...F8 2,911(2) Å, имеющим незначительную энергию *E*_{МП} –1,2 ккал/моль. В то же время в полиморфе 26 невозможно разделить по энергии внутрислоевые контакты: F4...O3 2,895(2), E_{MII} -4,9; C4...F9 3,028(2), E_{MII} -4,6; F4...F8 2,901(2) Å, Е_{МП} −3,3, и межслоевой F2...C4 с расстоянием 3,263(2) Å, несколько превышающим сумму ВДВР и Емп –4,0 ккал/моль.

В кристалле фталида **3** энергия взаимодействия H-связанной молекулярной пары в цепочке наибольшая, $E_{\rm MII}$ –16,4 ккал/моль. Такое увеличение энергии, видимо, связано с дополнитель-

Рис. 4. Фрагмент упаковки молекул соединения 3

ными взаимодействиями в паре: С—F9... π с расстоянием F...центроид 3,476(1) и кислорода гетероцикла O2... π с расстоянием O...центроид 3,218(1) Å (рис. 4). Взаимодействие F2...F5 (2,777(1) Å, -3,0 ккал/моль), связывающее через одну молекулы в цепочке, дополнительно стабилизируют ее. Среди межцепочечных выделим взаимодействие с $E_{\rm MII} = -5,9$ ккал/моль, характеризуемое контактом F3...F5 2,932(2) Å и взаимодействием С—F4... π с расстоянием F...центроид 3,233(1) Å. Данные взаимодействия связывают цепочки вдоль направления (a—b). $E_{\rm MII}$ с оставшимися четырьмя из шести соседних цепочками не превышает –2,3 ккал/моль.

В кристаллогидрате **1а** молекула воды прочно ($E_{\rm MII} = -14,7$ ккал/моль) связана с молекулой фталида Н-связью O3—H...O1S (см. рис. 2, δ), образуя супермолекулу — OD супрамолекулярный мотив. В свою очередь, супермолекулы, являющиеся гидратами фталида, взаимодействуют друг с другом, образуя водородную связь O1S—H2...O1=C молекулы воды с фталидом соседнего гидрата с $E_{\rm MII}$ –4,9 ккал/моль и контакт F1...F7 2,803(2) Å с $E_{\rm MII}$ –5,9 ккал/моль между молекулами фталидов этих же гидратов. В результате создается цепочка гидратов $C_2^2(8)$ вдоль оси *а*. Отметим межцепочечные взаимодействия C—F7... π , F...центроид 3,403(1), $E_{\rm MII}$ –5,2, связывающее цепочки парами, и взаимодействия HO3...C7 3,212(2), –3,7; F3...F4 2,885 Å, –3,2 ккал/моль между ними.

выводы

В кристаллах фталидов 1, 2(аб), 3 реализуется синтон водородной связи О—Н...О=С с образованием цепочек молекул $C_1^1(6)$. При этом энергия взаимодействия H-связанных пар молекул возрастает в этом ряду, что можно объяснить дополнительными взаимодействиями C=O... π в кристаллах 2, О... π и С—F... π в кристалле 3. Заметим, что молекулярные цепочки моноклинного 2a и ромбического 2б полиморфов различаются относительной ориентацией соседних молекул, имея практически одинаковую энергию взаимодействия водородносвязанных молекулярных пар. В кристаллах 1 цепочки упаковываются в двойные спирали (стержни), образуя на их поверхности F-агрегат. В кристаллах 1a посредством водородной связи О3—H...O1S с молекулой воды образован прочный гидрат (0D мотив), связанный в цепочки $C_2^2(8)$ через водородную связь молекул воды и фталида (синтон О—H...O=C) и взаимодействие молекул фталида соседних гидратов. Таким образом, супрамолекулярные 1D мотивы наблюдаются во всех исследованных кристаллах, упаковываясь, в свою очередь, в различные трехмерные супрамолекурные архитектуры.

СПИСОК ЛИТЕРАТУРЫ

- 1. Desiraju G.R. // Chem. Commun. 1997. P. 1475 1482.
- 2. Allen F.H., Motherwell W.D.S., Raithby P.R. et al. // New J. Chem. 1999. 23, N 1. P. 25 34.
- 3. Стид Дж.В., Этвуд Дж.Л. Супрамолекулярная химия. М.: ИКЦ "Академкнига", 2007.
- 4. Steiner T. // Angew. Chem. Int. Ed. Engl. 2002. 41. P. 48 76.
- 5. *Desiraju G.R.* // Acc. Chem. Res. 2002. **35**. P. 565 573.
- 6. Reichenbacher K., Suss H.I., Hulliger J. // Chem. Soc. Rev. 2005. 34. P. 22 30.
- 7. Cambridge Structural Database. Version 5.36, February 2015 update. University of Cambridge, UK.
- Nolan E.M., Ryu J.W., Jaworski J., Feazell R.P., Sheng M., Lippard S.J. // J. Am. Chem. Soc. 2006. 128. – P. 15517 – 15528.
- 9. Tannaci J.F., Noji M., McBee J., Tilley T.D. // J. Org. Chem. 2007. 72. P. 5567 5573.

- 10. Zonov Y.V., Karpov V.M., Platonov V.E., Rybalova T.V., Gatilov Yu.V. // J. Fluorine Chem. 2006. 127. P. 1574 1783.
- 11. Prabhu U.D.G., Eapen K.C., Tamborski C. // J. Org. Chem. 1984. 49. P. 2792 2795.
- 12. Zonov Y.V., Karpov V.M., Platonov V.E. // J. Fluorine Chem. 2005. 126. P. 437 443.
- Зонов Я.В., Карпов В.М., Платонов В.Е., Гатилов Ю.В. // Журн. орган. химии. 2008. 44. С. 212 226. [Zonov Ya.V., Karpov V.M., Platonov V.E., Gatilov Yu.V. // Russ. J. Org. Chem. 2008. 44, N 2. P. 202 217].
- 14. Zonov Y.V., Karpov V.M., Platonov V.E., Rybalova T.V. // J. Fluorine Chem. 2013. 145. P. 41 50.
- 15. *Zhao Y., Truhlar D.G.* // Theor. Chem. Account. 2008 **120**. P. 215 241.
- 16. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. 14. P. 1347 1363.
- 17. Shishkin O.V., Dyakonenko V.V., Maleev A.V., Schollmeyerd D., Vysotsky M.O. // Cryst. Eng. Comm. 2011. – 13. – P. 800 – 805.
- 18. Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. // J. Appl. Crystallogr. – 2008. – 41. – P. 466 – 470.
- 19. Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R. // J. Chem. Soc. Perkin Trans. II. 1987. N 12. P. S1 S19.
- 20. Hashmi A.S.K., Lothschutz C., Dopp R., Ackermann M., Becker J.De B., Rudolph M., Scholtz C., Rominger F. // Adv. Synth. Catal. – 2012. – **354**. – P. 133 – 147.
- 21. Rudinger-Adler E., Hostettmann M., Gramlich V., Petter W. // Helv. Chim. Acta. 1984. 67. P. 743 747.
- 22. Papoutsis I., Spyroudis S., Varvoglis A., Raptopoulou C.P. // Tetrahedron. 1997. 53. P. 6097 6112.
- Dobson A.J., Gerkin R.E. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996. 52. P. 3078 3081.
- 24. Rudinger-Adler E., Hostettmann M., Gramlich V., Petter W. // Helv. Chim. Acta 1984. 67. P. 743 747.
- 25. Kitoh S., Matsushima T., Matsumoto N., Senda H., Kunimoto K.-K. // Anal. Sci. 2002. 18. P. 615 616.
- 26. Evans K.L., Gandour R.D., Fronczek F.R. // Private Communication. 2013. refcode ZIWSUV.
- 27. Гринева О.В., Зоркий П.М. // Журн. физ. химии. 2000. 74. С. 1937 1943 [Grineva O.V., Zorkii P.M. // Russ. J. Phys. Chem. 2000. 74, N 11. P. 1758 1764].
- 28. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. 100. P. 7483 7391.
- 29. Mooibroek T.J., Gamez P., Reedijk J. // Cryst. Eng. Comm. 2008. 10. P. 1501 1515.
- Рыбалова Т.В., Гатилов Ю.В., Карпов В.М. // Журн. структур. химии. 2014. 55, Прилож. № 2. С. S320 S328. [Rybalova T.V., Gatilov V.Yu., Karpov V.M. // J. Struct. Chem. 2014. 55, N 8. Р. 1496 1505].