2014

Nº 1

УДК 622.28, 622.831

ГЕОМЕХАНИЧЕСКАЯ ОЦЕНКА КОМБИНИРОВАННОЙ ГЕОТЕХНОЛОГИИ ПРИ ОТРАБОТКЕ МОЩНОЙ ПОЛОГОЙ РУДНОЙ ЗАЛЕЖИ

А. А. Неверов

Институт горного дела им. Н. А. Чинакала СО РАН, Красный проспект, 54, 630091, г. Новосибирск, Россия

Разработана технология отработки мощных и весьма мощных пологопадающих рудных месторождений, сочетающая комбинацию систем разработки с разными способами управления горным давлением. Установлены закономерности распределения напряжений в конструктивных элементах геотехнологии. Анализ устойчивости массива пород позволил определить область безопасного освоения системы разработки.

Система разработки, технологические схемы, массив пород, напряженно-деформированное состояние, лавная подсечка, временные поддерживающие целики, рудная консоль, кровля, устойчивость, безопасность работ

Применительно к выемке мощных и весьма мощных пологопадающих залежей разработан перспективный вариант комбинированного способа добычи, не известный в практике отработки рудных месторождений. В пределах блока часть запасов извлекается системой с открытым выработанным пространством, другая — с обрушением вмещающих пород. В основу конструирования геотехнологии положены преимущества систем разработки с камерно-столбовой выемкой и с обрушением, позволяющие интенсифицировать добычные процессы и повысить качество и полноту извлечения запасов [1-3].

Сущность способа разработки состоит в следующем (рис. 1). На границах выемочного участка (блока) по кровле и почве рудного тела проходятся вентиляционно-доставочные выработки 1 и 2 (базовый вариант). Между ними камерно-столбовой выемкой формируется верхняя и нижняя лавные подсечки 3 и 4. Образованная рудная консоль 5 и налегающие породы 6 поддерживаются временными рудными столбчатыми целиками 7. Высота, диаметр и расстояние между целиками определяются из условия устойчивого состояния кровли подсечек и необходимых технологических зазоров для работы и маневров буровой и погрузочно-доставочной самоходной горной техники.

Отбойка рудной консоли между подсечками и прилегающих к ней первого ряда рудных целиков, подвигание лавных забоев ведется под предварительно обрушенными налегающими породами с некоторым опережением подкровельной подсечки (рис. 2*a*) или параллельным фронтом

Работа выполнена при финансовой поддержке гранта Президента РФ № 14.122.13.5000 - МК.

(рис. 26, в). Разбуривание и погашение консоли при мощности рудного тела 25–30 м осуществляется из нижней лавной подсечки, при мощности более 30 м — из подэтажных буровых выработок, пройденных в средней области залежи.

Рис. 1. Комбинированная система разработки (базовый вариант — нижний и верхний лавный забой): 1 — доставочный штрек; 2 — вентиляционный штрек; 3 — нижняя лавная подсечка; 4 — верхняя (подкровельная) лавная подсечка; 5 — рудная консоль; 6 — обрушенные породы; 7 — временные целики, поддерживающие рудную и породную консоли; 8 — подэтажный буровой штрек; 9 — буродоставочный штрек межлавного панельного целика; 10 — рудная залежь; 11 — вмещающие породы; 12 — межлавный панельный целик; 13 — отбитая руда; 14 — скважины для отбойки руды; 15 — шпуры для образования подсечки; 16 — скважины для посадки породной кровли; 17 — буровая каретка; 18 — погрузочно-доставочная машина

Другим способом исполнения геотехнологии является вариант без проходки верхней подсечки (рис. 2δ). В этом случае для посадки налегающих пород по контуру кровли проходятся буровые выработки, число которых определяется длиной фронта выемочного участка.

Рис. 2. Технологические схемы комбинированной технологии: *а* — базовый вариант; *б* — нижний лавный очистной забой с обрушением пород кровли; *в* — нижний и верхний лавные забои с обрушением пород кровли; *г* — нижний лавный забой с выпуском руды из подконсольного пространства

Рассмотрена также технологическая схема способа добычи с выпуском руды из под зависающей породной консоли (рис. 2*г*), при которой возможно ожидать некоторое повышение полноты и качества извлечения запасов [4].

В качестве объекта исследования и оценки напряженно-деформированного состояния (НДС) массива горных пород в конструктивных элементах комбинированной выемки руд приняты условия вкрапленных залежей месторождений Норильского региона. Особенностью этих рудных

тел является залегание в почве, кровле и центральной части трех типов минерального сырья, различающихся по вещественному составу, обогатимости и ценности. Рассматриваемая система разработки позволяет раздельно извлекать запасы руд из недр.

ПОСТАНОВКА ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ

Решение задачи выполнено численным моделированием НДС массива пород методом конечных элементов (МКЭ) [5–7]. Рассматривалась трехмерная упругая модель, где в отдельные слои с усредненными деформационными и плотностными характеристиками были выделены вмещающие породы двух типов и рудное тело. Эти разновидности массива горных пород моделировались как сплошные, упругие, изотропные, линейно-деформируемые, однородные материалы с физико-механическими свойствами, характерными для вкрапленных полиметаллических рудных залежей месторождений Норильского региона (табл. 1).

Порода	Плотность, <i>ү</i> кг/м ³	Прочность на сжатие σ_{cx} , МПа	Прочность на растяжение $\sigma_{ m p}$, МПа	Сцепление С, МПа	Угол внутреннего трения <i>φ</i> , град	Коэффициент Пуассона <i>µ</i>	Модуль Юнга <i>E</i> , ГПа
Вкрапленная руда	4000	$\frac{80\div213}{140}$	$\frac{6\div 18.8}{12.5}$	$\frac{15 \div 40}{27}$	35 ÷ 55	0.25	50
Габбро-долерит с сульфидным оруденением	2700	$\frac{40\div180}{120}$	$\frac{5\div 16.5}{11.2}$	$\frac{12\div 33}{24}$	33÷52	0.23	55
Безрудные габбро-долериты	2700	113÷230	$\frac{10\div18.5}{15}$	$\frac{25.3 \div 46}{30}$	30 ÷ 50	0.22	60

ТАБЛИЦА 1. Физико-механические свойства массива пород

Примечание. В числителе — диапазон изменения величин, в знаменателе — средние значения.

Вес горных пород в задачах учитывался объемной силой γg . На контактах разнородных пород принималось условие жесткого сцепления. Контуры открытых обнажений свободны от внешних нагрузок. По граничным условиям решения получены для двух вариантов распределения исходного поля напряжений в массиве [4, 8]:

1) гравитационного напряженного состояния по Диннику:

$$\sigma_y = \gamma g H, \quad \sigma_x = \sigma_z = q \sigma_y, \quad \tau_{xy} = \tau_{yz} = \tau_{xz} = 0, \tag{1}$$

где σ_y , σ_z и τ_{xy} , τ_{yz} , τ_{xz} — соответственно вертикальная и горизонтальные нормальные и касательные компоненты тензора напряжений (ось *y* направлена вертикально вниз); *H* — глубина разработки; γ — плотность пород; *g* — ускорение свободного падения; $q = \mu/(1-\mu)$ — ко-эффициент бокового распора; μ — коэффициент Пуассона.

2) тектонического:

$$\sigma_y = \gamma g H, \quad \sigma_x = q_x \sigma_y, \quad \sigma_z = q_z \sigma_y, \quad \tau_{xy} = \tau_{yz} = \tau_{xz} = 0, \quad (2)$$

где q_x , q_z — коэффициенты бокового давления по простиранию и вкрест простирания залежи соответственно.

Для определения изменения исходного тектонического поля напряжений были обобщены геомеханические условия месторождений Норильского региона [2]. Установлено, что с ростом глубины горных работ максимальные горизонтальные напряжения ($\sigma_x = \sigma_{h, \text{max}}$) растут, а коэффициент бокового давления *q* падает по нелинейной зависимости [2]. На основании этих данных для расчетов приняты величины напряжений в соответствии с табл. 2.

Глубина выемки, м		Коэффициент			
	горизон	тальное	вертикальное	бокового давления, $q = \sigma_{\rm x} / \sigma_{\rm y}$	
	$\sigma_x = \sigma_{h, \max}$	$\sigma_z = \sigma_{h,\min}$	$\sigma_y = \sigma_v$		
400	25	10.6	10.6	2.36	
600	35	15.6	15.6	2.24	
800	42	21	21	2	

ТАБЛИЦА 2. Компоненты исходного тектонического поля напряжений

На рис. 3 представлена схема расчетной области R — параллелепипед ($0 \le x \le L_x$, $0 \le y \le L_y$, $0 \le z \le L_z$) с постановкой задачи (краевыми условиями) и фрагмент ее дискретизации на конечные элементы.

Рис. 3. Схема расчетной области с постановкой задачи (*a*) и фрагмент ее дискретизации на конечные элементы (δ): * — для условий исходного гравитационного поля напряжений; u_y , u_x , u_z — вертикальная и горизонтальные компоненты вектора перемещений, *h* — расстояние от верхней границы модели до почвы рудной залежи

Основные геометрические параметры расчетных вариантов одиночной панели: глубина горных работ H - 400, 600 и 800 м; мощность рудной залежи m - 40 м; длина лавы (подсечки) $L_v - 30$, 60 и 100 м; диаметр поддерживающих целиков $d_c - 4$, 6 и 8 м; расстояние между целиками $L_k = 8$ м; высота подсечного пространства (целиков) $h_p - 4$, 6, 8 и 10 м; ширина подсечного пространства $B_p - 20 - 30$ м; высота обрушения пород кровли $h_r - 0$ м, 0.5m и m; длина опережения верхней подсечки над нижней $L_o - 30 - 50$ м; длина пролета отработки $L_p - 50 - 250$ м; развитие фронта горных работ (1 - по направлению действия $\sigma_{h, \text{max}}$; 2 - вдоль действия $\sigma_{h, \text{min}}$). Базовый вариант — напряжение $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя. Результаты расчетов приводятся в виде картин изолиний и зависимостей компонент главных и максимального касательного τ_{max} напряжений (МПа). За максимальное главное напряжений принято q = 2, гравитационное -q = 0.283.

АНАЛИЗ ВЛИЯНИЯ ГОРНОТЕХНИЧЕСКИХ ФАКТОРОВ НА НДС МАССИВА ПОРОД

На рис. 4 приведены фрагменты распределения напряжений σ_1 в конструктивных элементах базового варианта с опережающей посадкой налегающих пород в подкровельной подсечке (см. рис. 2*a*).

Рис. 4. Характер распределения напряжений σ_1 в поперечном центральном сечении панели (*a*) и в продольном (б) по длине очистного забоя (вдоль целиков второго ряда нижней подсечки): H = 800 м, m = 40 м, $d_c = 4$ м, $h_p = 10$ м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя

Выполненные расчеты НДС массива горных пород показали следующее.

1. С ростом глубины выемки от 400 до 800 м в центральных столбчатых целиках первого ряда на границе с обрушением независимо от вида исходного поля напряжений нетронутого массива и параметров подсечек наблюдается повышение давления σ_1 более чем в 1.6–2.0 раза (рис. 5).

Рис. 5. Распределение напряжений σ_1 в центральном целике первого ряда в зависимости от глубины разработки: *a* — нижняя подсечка; *б* — верхняя: $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{ max}}$ ориентировано вкрест очистного забоя; *l* — $d_c = 4$ м, q = 2; *2* — $d_c = 8$ м, q = 2; *3* — $d_c = 4$ м, q = 0.283; *4* — $d_c = 8$ м, q = 0.283

В тектонически напряженных массивах при $h_p = 4$ м значения σ_1 в целиках нижней подсечки на 5–7% больше, чем в верхней. В аналогичной ситуации с гравитационным типом геосреды (q = 0.283) наблюдается противоположная картина с ростом σ_1 в целиках верхней подсечки на 30–70% в сравнении с нижней. Влияние глубины разработки на НДС целиков при их высоте 10 м в условиях q = 2 и q = 0.283 характеризуется снижением давления σ_1 в нижней подсечке по сравнению с верхней соответственно в 1.3–1.6 и 2.1–2.9 раза. Изменение минимального главного напряжения σ_3 в целиках с глубиной выемки не превышает 5%.

Характер распределения действующих напряжений в кровле лавных подсечек с увеличением H от 400 до 800 м характеризуется повышением σ_1 в 1.7 раза и ростом растягивающих усилий σ_3 в 1.5–3.0 раза и более.

В целом, оценивая НДС массива пород, можно отметить, что главные и максимальные касательные напряжения в поддерживающих целиках и породах кровли лавных подсечек для глубин 400-600 м не превышают предельные значения.

2. Увеличение диаметра целика d_c с 4 до 8 м приводит (рис. 6):

— к снижению максимального сжимающего напряжения σ_1 в центральной части столбчатого целика в условиях нижней подсечки в среднем в 1.4 и 1.8 раза соответственно при q = 2 и q = 0.283;

— к повышению растягивающих усилий σ_3 в целиках нижней лавы при ее высоте более 8 м;

— к уменьшению давления σ_1 в целиках подкровельной лавы в 1.35–1.55 раза и к изменению напряжений σ_3 от растягивающих к сжимающим.

Рост высоты целика h_p с 4 до 10 м сопровождается (рис. 6):

— снижением сжимающей компоненты σ_1 в центре целика для нижнего лавного забоя более чем в 2 и 3 раза соответственно для $d_c = 4$ и 8 м, для верхней подсечки — в 1.4 и 1.1 раза;

— увеличением растягивающих напряжений σ_3 ;

— снижением растягивающих усилий σ_3 при q = 2 в целиках с $d_c < 5$ м, надработанных опережающим обрушением пород кровли;

3. Установлено, что с увеличением высоты и диаметра столбчатых целиков в кровле лавы наблюдается снижение растягивающих напряжений σ_3 (рис. 7).

Рис. 6. Распределение главных напряжений в центральном целике первого ряда в зависимости от высоты подсечки: $a - \sigma_1$; $\delta - \sigma_3$: H = 800 м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{ max}}$ ориентировано вкрест очистного забоя; I - 4 - см. на рис. 5

Рис. 7. Распределение напряжений σ_3 в кровле подсечек центральной части панели между первым и вторым рядами целиков в зависимости от высоты подсечки: H = 800 м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя; l - 4 — см. на рис. 5

В неблагоприятных условиях находятся кровли подсечек при гравитационном распределении исходных напряжений в массиве, где значения растягивающих усилий достигают $\sigma_3 = -6.0 \div -12.0$ МПа. В тектонически напряженных массивах за счет высоких горизонтальных сил сжатия растягивающие нагрузки не превышают $\sigma_3 = -2.0 \div -6.0$ МПа. Максимальные их значения относятся к верхнему лавному забою. Таким образом, увеличение жесткости целиков приводит к ухудшению устойчивости непосредственной кровли подсечек.

4. С ростом длины лавы от 30 до 100 м в целиках нижней подсечки независимо от характера распределения исходных напряжений в массиве наблюдается снижение σ_1 в среднем в 1.7 и 1.2 раза соответственно для $d_c = 4$ и 8 м при $h_p = 10$ м и существенный рост растягивающих усилий σ_3 (рис. 8). В целиках верхней лавной подсечки, наоборот, отмечается их пригрузка и практически отсутствуют зоны растяжения.

В кровле нижней подсечки при увеличении L_v с 30 до 100 м происходит падение концентрации сжимающих нагрузок σ_1 в среднем в 1.4 и 1.7 раза при q = 2 и q = 0.283 соответственно и уменьшение растягивающих напряжений σ_3 более чем в 2 раза. В условиях верхней подсечки наблюдается значительный рост растягивающей компоненты в 1.5-2 раза и более.

5. Увеличение длины пролета отработки с 50 до 250 м сопровождается незначительным повышением уровня σ_1 в центральной части целиков и кровле подсечек в среднем на 5–10%. С ростом длины опережающего обрушения пород кровли с 30 до 50 м напряжения σ_1 в целиках нижней лавы снижаются на 4–8%.

Рис. 8. Распределение главных напряжений в центральном целике первого ряда в зависимости от длины лавной подсечки: *a* — нижняя подсечка; *б* — верхняя: $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя; *l* — $d_c = 4$ м, $h_p = 10$ м; *2* — $d_c = 8$ м, $h_p = 10$ м; *3* — $d_c = 4$ м, $h_p = 6$ м; *4* — $d_c = 8$ м, $h_p = 6$ м

6. Одним из параметров, позволяющих управлять НДС массива, является размер зоны обрушения h_r . Моделированием для технологических схем (см. рис. 2δ , ϵ) установлено, что увеличение высоты зоны обрушения породной кровли ведет к снижению напряжений σ_1 в поддерживающих целиках и росту растягивающих усилий σ_3 для условий нижней подсечки при q = 2 (рис. 9). В варианте с параметрами исходного поля напряжений q = 0.283 в целиках наблюдается переход σ_3 от сжимающих к растягивающим. Отличительным моментом является уменьшение растягивающей компоненты в верхней лаве в условиях q = 2. Разгрузка столбчатых целиков верхней лавы более существенна, чем в нижней. С ростом h_r до высоты, равной мощности рудной залежи, в условиях верхней подсечки давление σ_1 в столбчатых целиках снижается на 35 и 15% соответственно для тектонического и гравитационного распределения напряжений в нетронутом массиве.

Анализ НДС массива пород в кровле нижней подсечки (см. рис. 26) при q = 2 показал, что повышение h_r обусловливает, с одной стороны, снижение растягивающих напряжений в 1.3 раза, с другой — рост σ_1 на 10–15%. В условиях q = 0.283 влияние высоты h_r на состояние пород кровли не существенно. В варианте с подкровельной подсечкой (рис. 26), наоборот, с увеличением h_r в кровле нижней лавы наблюдается рост растягивающих усилий при q = 2 в 1.2 раза

и q = 0.283 — менее 5 %. Состояние кровли верхней подсечки характеризуется более заметным повышением растягивающей компоненты σ_3 от -5.0 до -10.0 МПа соответственно при q = 2 и q = 0.283.

Рис. 9. Изменение главных напряжений в центральном целике первого ряда в зависимости от высоты зоны обрушения пород кровли: $a - \sigma_1$ и σ_3 (см. рис. 2δ); δ , s — то же (см. рис. 2s): H = 800 м, $h_p = 10$ м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя; $l - d_c = 4$ м, q = 2; $2 - d_c = 8$ м, q = 2; $3 - d_c = 4$ м, q = 0.283; $4 - d_c = 8$ м, q = 0.283

Исследования ориентации исходных горизонтальных напряжений $\sigma_{h, \max}$, $\sigma_{h, \min}$ на НДС столбчатых целиков (рис. 10) и пород кровли подсечек позволили отметить следующее (см. рис. 2a-e):

— в нижней подсечке в технологических схемах a-e ориентация максимального горизонтального напряжения $\sigma_{h, \text{max}}$ практически не оказывает влияния (менее 10%) на величину σ_1 в целиках;

— поддерживающие целики верхней подсечки схем *a* и *в* при развитии фронта отработки залежи по направлению $\sigma_{h, \text{max}}$ испытывают давление σ_1 соответственно на 25 и 40% ниже, чем при ориентации $\sigma_{h, \text{max}}$ вкрест очистной выемки;

— в схеме *а* целики нижней подсечки в большей степени подвержены разгрузке, чем верхней и, наоборот, в схеме *в*;

— в целиках нижней лавной подсечки во всех рассматриваемых вариантах при действии $\sigma_{h, \max}$ по направлению фронта выемки наблюдаются значительные растягивающие усилия, которые в 2–4 раза превышают значения, полученные при ориентации $\sigma_{h, \max}$ вкрест очистного забоя;

— в столбчатых целиках верхней лавы растягивающие напряжения существенно меньше, чем в нижней подсечке;

— в кровле подсечек при ориентации $\sigma_{h, \max}$ вкрест развития фронта выемки отмечается рост максимальных сжимающих напряжений σ_1 в среднем в 3–4 раза и увеличение растягивающих усилий σ_3 в 2 раза и более, в сравнении с вариантом отработки залежи по направлению $\sigma_{h, \max}$.

Рис. 10. Изменение главных напряжений в центральном целике первого ряда в зависимости от ориентации фронта горных работ относительно $\sigma_{h, \max}: a - \sigma_1$ и σ_3 (см. рис. 26); δ — то же (см. рис. 2*a*): H = 800 м, $h_p = 10$ м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м; l, 2 — при действии $\sigma_{h, \max}$ соответственно вкрест и по простиранию развития фронта выемки для нижней подсечки; 3, 4 — то же для верхней подсечки

Оценка результатов расчета НДС поддерживающих целиков и кровли подсечек в технологической схеме (рис. 2*г*) согласуется с базовым вариантом.

ОЦЕНКА УСТОЙЧИВОСТИ МАССИВА ГОРНЫХ ПОРОД

Оценка устойчивости столбчатых целиков и кровли лавных подсечек осуществлялась по критерию Кулона–Мора [7, 9–11]. Для установления областей запредельного деформирования массива пород использовался коэффициент запаса прочности K_y , определяемый из уравнения прямой огибающей предельные круги напряжений Мора:

$$K_{y} = \frac{2C\cos\varphi + (\sigma_{1} + \sigma_{3})\sin\varphi}{\sigma_{1} - \sigma_{3}},$$
(3)

где σ_1 , σ_3 — максимальные и минимальные главные напряжения соответственно (получены из упругого решения); *С* и φ — сцепление и угол внутреннего трения пород.

Значение $K_y < 1$ характеризует запредельное деформирование горных пород. Сопоставительная оценка сохранности целиков и кровли лавных подсечек выполнялась на основе показателей физико-механических характеристик вкрапленных руд Норильских месторождений (см. табл. 1). Для анализа возможных рисков при определении устойчивости пород учитывалось значение коэффициента структурного ослабления массива ($K_c = 0.8$).

На основании выполненных расчетов показателя K_y приведены сравнительные оценки устойчивости столбчатых целиков (рис. 11, 12) и пород кровли подсечек (табл. 3) для базового варианта на глубинах горных работ до 800 м.

Рис. 11. Изменение показателя K_y в центральном целике первого ряда в зависимости от глубины ведения горных работ: a — нижняя подсечка; δ — верхняя: $h_p = 4$ м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя; l — $d_c = 4$ м; 2 — $d_c = 6$ м; $3 - d_c = 8$ м

Рис. 12. Изменение показателя K_y в центральном целике первого ряда в зависимости от его высоты: *а* — нижняя подсечка; *б* — верхняя: H = 800 м, $L_v = 60$ м, $L_p = 50$ м, $L_o = 30$ м, $\sigma_{h, \text{max}}$ ориентировано вкрест очистного забоя; I - 3 — см. на рис. 11

В большинстве случаев максимальной прочностью обладают столбчатые целики в условиях гравитационной модели геосреды. Для технологической схемы (см. рис. 2г) состояние поддерживающих целиков и пород кровли подсечки независимо от бокового давления и размеров целиков характеризуется как устойчивое ($K_v \ge 1.2$).

В наиболее неблагоприятных условиях находятся столбчатые целики диаметром 4 м при глубине ведения горных работ 800 м ($K_y \rightarrow 1.0$). На глубинах выемки 400-600 м устойчивое состояние поддерживающих целиков наблюдается при всех рассмотренных параметрах системы разработки.

Результаты определения устойчивости пород кровли лавных подсечек свидетельствуют о том, что их сохранность обеспечивается за счет действия в массиве высоких горизонтальных тектонических напряжений. В условиях гравитационного распределения исходных напряжений в массиве потеря устойчивости пород кровли на глубине ведения очистной выемки 800 м значительна особенно в верхней лавной подсечке, где значения растягивающих усилий превышают – 10.0 МПа ($K_v \leq 1.0$).

Таким образом, возможное разрушение столбчатых целиков и обрушение пород кровли лавных подсечек накладывают основное ограничение на выбор параметров системы разработки и ее применения на глубоких горизонтах (H = 800 м и более) независимо от вида исходного поля напряжений. В условиях массива с гравитационным типом геосреды освоение комбинированной технологии возможно при формировании в верхней подсечке целиков диаметром не менее 8 - 10 м.

Модель геосреды	Глубина горных работ, м	$h_p = 4 \text{ M}$			$h_p = 6 \text{ M}$			
		$d_c = 4 \text{ M}$	$d_c = 6 \text{ M}$	$d_c = 8 \text{ M}$	$d_c = 4 \text{ M}$	$d_c = 6 \text{ M}$	$d_c = 8 \text{ M}$	
Tектоническая $q=2$	Нижняя подсечка							
	400	1.43	1.47	1.52	1.40	1.45	1.48	
	600	1.25	1.28	1.31	1.21	1.24	1.27	
	800	1.15	1.18	1.19	1.14	1.17	1.18	
	Верхняя подсечка							
	400	1.37	1.43	1.48	1.41	1.47	1.50	
	600	1.13	1.19	1.24	1.15	1.22	1.28	
	800	1.02	1.06	1.13	1.03	1.07	1.15	
Γ равитационная $q = 0.283$	Нижняя подсечка							
	400	2.94	3.10	3.43	3.05	3.15	3.47	
	600	2.00	2.28	2.55	2.16	2.33	2.59	
	800	1.69	1.90	2.35	1.69	2.04	2.41	
	Верхняя подсечка							
	400	2.07	2.22	2.40	2.27	2.50	2.52	
	600	1.20	1.40	1.60	1.24	1.71	1.70	
	800	0.71	0.75	0.81	0.75	0.81	0.91	

ТАБЛИЦА 3. Показатель К_v в кровле подсечек

выводы

Разработан вариант комбинированной отработки мощных пологопадающих рудных тел с камерно-столбовой выемкой подкровельного и подсечного слоя залежи и обрушением консоли между ними под налегающими породами. По условию безопасности и извлечения запасов руд вкрапленных залежей Норильского региона предлагаемая система разработки применима на глубинах до 800 м независимо от вида распределения исходных напряжений в нетронутом массиве пород.

Основными параметрами комбинированной геотехнологии для безопасного управления горным давлением являются регулирование жесткости целиков, выбор высоты зоны обрушения налегающих пород и направление фронта ведения очистных работ:

 с увеличением диаметра целиков, высоты и длины лавных подсечек, высоты зоны обрушения породной кровли достигается снижение уровня максимальных сжимающих напряжений в центральных поддерживающих столбчатых целиках нижнего лавного забоя;

— опережающее формирование защитной зоны обрушением налегающих пород кровли обеспечивает повышение устойчивости конструктивных элементов системы разработки;

 повышенные горизонтальные тектонические напряжения способствуют росту устойчивости пород кровли и целиков лавных подсечек.

СПИСОК ЛИТЕРАТУРЫ

- 1. Борщ-Компониец В. И., Макаров А. Б. Горное давление при отработке мощных пологих рудных залежей. М.: Недра, 1986.
- **2.** Бронников Д. Н., Замесов Н. Ф., Богданов Г. И. Разработка руд на больших глубинах. М.: Недра, 1982.
- **3.** Фрейдин А. М., Неверов А. А., Неверов С. А., Филиппов П. А. Современные способы разработки рудных залежей с обрушением на больших глубинах. Новосибирск: Изд-во СО РАН, 2008.
- **4.** Неверов А. А. Геомеханическое обоснование нового варианта камерной выемки пологих мощных залежей с выпуском руды из подконсольного пространства // ФТПРПИ. 2012. № 6.
- 5. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975.
- **6.** Назарова Л. А., Фрейдин А. М., Неверов А. А. Освоение камерной системы разработки с обрушением кровли на Николаевском руднике // ФТПРПИ. 2005. № 4.
- 7. Неверов С. А., Неверов А. А. Сравнительная геомеханическая оценка вариантов выпуска руды подэтажного обрушения с ростом глубины // ФТПРПИ. — 2013. — № 2.
- **8.** Неверов С. А. Типизация рудных месторождений с ростом глубины по виду напряженного состояния. Ч. 2: Тектонотипы рудных месторождений и модели геосреды // ФТПРПИ. 2012. № 3.
- **9.** Литвинский Г. Г. Аналитическая теория прочности горных пород и массивов. Донецк: Норд-Пресс, 2008.
- Болтенгаген И. Л., Кореньков Э. Н., Попов С. Н., Фрейдин А. М. Обоснование параметров сплошной камерной системы разработки с управляемым обрушением кровли // ФТПРПИ. — 1997. — № 1.
- **11. Казикаев Д. М.** Геомеханика подземной разработки руд: учебник для вузов. М.: Изд-во МГГУ, 2005.

Поступила в редакцию 15/VIII 2013