УДК 519.632.4

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВОБОДНЫХ КОЛЕБАНИЙ БАЛКИ С ОСЦИЛЛЯТОРАМИ

С. Д. Алгазин

Институт проблем механики РАН, 119526 Москва E-mail: algazinsd@mail.ru

Рассматривается задача о свободных колебаниях балки со свободными концами переменных сечения и массы, к которой на штангах подвешены сосредоточенные массы (осцилляторы). Показано, что в этой колебательной системе возможны параметрические резонансы. Приведены примеры численных расчетов, которые подтверждают эффективность разработанной методики расчета.

Ключевые слова: свободные колебания, балка переменных сечения и массы, осцилляторы.

Введение. В [1] рассмотрены задачи на собственные значения, когда решения соответствующих уравнений — гладкие функции. Однако некоторые задачи математической физики приводят к задачам на собственные значения с кусочно-гладкими функциями (см. ниже). В данной работе результаты [1] обобщаются на задачи с кусочно-гладкими функциями. Оценка погрешности предложенного метода приведена в [2]. Продольные колебания стержня рассмотрены в [3]. В данной работе рассматриваются поперечные колебания балки с осцилляторами. Программы на Фортране приведены в [4].

1. Постановка задачи. Рассмотрим балку $(0 \le x \le a)$ со свободными концами, к которой в точках $x = x_k$, k = 1, 2, ..., n на невесомых штангах (в начальный момент параллельных оси балки) длиной l_k прикреплены сосредоточенные массы m_k (осцилляторы), так что при отклонении штанги с грузом на малый угол φ относительно касательной к оси балки в точке подвеса возникает момент, пропорциональный углу поворота с коэффициентом c_k и стремящийся вернуть груз в исходное положение.

Штанги с грузами будем считать твердыми телами, а балку — упругой с жесткостью на изгиб $EI_x(x)$ и погонной массой m(x). Колебания будем считать бесконечно малыми, так что сосредоточенные грузы совершают колебания в плоскости, перпендикулярной нейтральной оси балки. Выведем уравнения свободных колебаний этой механической системы.

Сначала рассмотрим силы, действующие на балку со стороны штанги с грузом. Если угол φ мал, так что величинами φ^2 можно пренебречь, то $\sin \varphi \approx \varphi$, $\cos \varphi \approx 1$, и, следовательно, груз совершает колебания в плоскости, перпендикулярной нейтральной оси балки. Таким образом, сила реакции, действующая на балку в точке прикрепления $x = x_k$, направлена перпендикулярно оси балки.

Итак, на балку действует нагрузка

$$f(x,t) = M\delta'(x-x_0) + R\delta(x-x_0).$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-01-00250).

Предположим, что момент -M, действующий на штангу с грузом, пропорционален углу между штангой и касательной к нейтральной оси в точке подвеса и направлен так, что стремится вернуть груз в исходное положение.

Если прогиб обозначить через v(x), то уравнение изгиба балки принимает вид

$$(EI_x v'')'' = M\delta'(x - x_0) + R\delta(x - x_0).$$

Добавив в динамическое уравнение балки силы инерции, получим

$$\frac{\partial^2}{\partial x^2} \left(EI_x \frac{\partial^2 v}{\partial x^2} \right) + m(x) \frac{\partial^2 v}{\partial t^2} = R\delta(x - x_0) + M\delta'(x - x_0),$$

где m(x) — погонная масса.

Далее определим геометрические соотношения. Пусть z_0 — амплитуда осциллятора, т. е. расстояние между массой и осью x (нейтральной осью балки в первоначальном состоянии); y_0 — амплитуда точки подвеса. Тогда в случае правого расположения осциллятора

$$(z - y_0)/l_0 = \sin \varphi \approx \varphi, \qquad z_0 = y_0 + l_0 \varphi,$$

в случае левого расположения осциллятора

$$(z - y_0)/l_0 = \sin(\pi - \varphi) = \sin\varphi \approx \varphi, \qquad z_0 = y_0 + l_0\varphi$$

С учетом знака φ (положительное направление φ отсчитывается против часовой стрелки) получим

$$z_0 = y_0 \mp l_0 \varphi \tag{1.1}$$

(знак "+" соответствует осциллятору, расположенному слева, знак "—" — осциллятору, расположенному справа).

Уравнение движения осциллятора вокруг точки прикрепления имеет вид

$$m_0 l_0^2 \ddot{\varphi} = -M \pm m_0 \ddot{y}_0 l_0.$$

Здесь -M — момент сил, действующих со стороны балки на осциллятор; $\pm m_0 \ddot{y}_0 l_0$ — момент сил инерции относительно точки $x = x_0$ (знак "+" соответствует осциллятору, расположенному справа, знак "-" — осциллятору, расположенному слева). Если $\ddot{y}_0 > 0$, то сила инерции направлена вверх и создает положительный момент в случае правого расположения осциллятора и отрицательный момент в случае левого расположения осциллятора.

Далее из (1.1) получаем $\ddot{z}_0 = \ddot{y}_0 \mp l_0 \ddot{\varphi}$. Следовательно, $-m_0 \ddot{y}_0 l_0 = -m_0 \ddot{z}_0 l_0 \mp m_0 l_0^2 \ddot{\varphi}$. Уравнение $m_0 \ddot{z}_0 = -R$ есть уравнение движения центра масс. Таким образом, имеем

$$m_0 l_0^2 \ddot{\varphi} = -M \mp R l_0 + m_0 l_0^2 \ddot{\varphi},$$

т. е.

$$M = \mp R l_0 \tag{1.2}$$

(знак "+" соответствует осциллятору, расположенному слева, знак "-" — осциллятору, расположенному справа).

Рассматриваемую задачу нужно дополнить уравнением свободных колебаний балки с осцилляторами. Будем полагать, что на штангу с осциллятором действует момент, пропорциональный углу $\varphi - y'(x_0)$ и стремящийся вернуть груз назад:

$$M = c_{\varphi}(\varphi - y'(x_0)) = c_{\varphi}(z - y_0 \mp l_0 y'(x_0)) / (\mp l_0).$$

Тогда

$$R = \mp M/l_0 = c_{\varphi}(z - y_0 \mp l_0 y'(x_0))/l_0^2$$

Из уравнения движения осцилля
тора $m_0\ddot{z}_0=-R$ получаем уравнение свободных колебаний осциллятора

$$-\lambda z_0 = -\lambda_0 (z_0 - y_0 \mp l_0 y'(x_0)), \qquad \lambda_0 = c_{\varphi} / (m_0 l_0^2).$$
(1.3)

Выведем уравнения свободных колебаний балки:

$$\frac{d^2}{dx^2} \left(EI_x \frac{d^2 y}{dx^2} \right) = \lambda m y + R\delta(x - x_0) + M\delta'(x - x_0), \qquad (1.4)$$

где

$$R\delta(x - x_0) + M\delta'(x - x_0) = R(\delta(x - x_0) \mp l_0\delta'(x - x_0)) =$$

= $c_{\varphi}(z - y_0 \mp l_0y'(x_0))(\delta(x - x_0) \mp l_0\delta'(x - x_0))/l_0^2.$

Для п осцилляторов получаем уравнения свободных колебаний

$$\frac{d^2}{dx^2} \left(EI_x \frac{d^2 y}{dx^2} \right) = \lambda m y + \lambda \sum_{k=1}^n m_k z_k (\delta(x - x_0) - l_k \delta'(x - x_0));$$
(1.5)

$$-\lambda z_k = \lambda_k (y_k - z_k + l_k y'_k), \qquad k = 1, 2, \dots, n.$$
 (1.6)

Здесь $l_k > 0$, если осциллятор находится справа, $l_k < 0$, если он находится слева;

$$EI_x y'' \Big|_{\substack{x=0\\x=a}} = 0; \tag{1.7}$$

$$(EI_x y'')'\Big|_{\substack{x=0\\x=a}} = 0.$$
(1.8)

Уравнения (1.2)–(1.8) представляют собой искомую постановку задачи свободных колебаний балки с осцилляторами.

2. Интегральное уравнение. Обозначим $p(x) \equiv EI_x$. Условия разрешимости уравнения (1.5) следующие:

$$\lambda \int_{0}^{a} m(\xi) y(\xi) \, d\xi + \lambda \sum_{k} m_k z_k = 0 \tag{2.1}$$

(сумма сил, приложенных к балке, равна нулю),

$$\lambda \int_{0}^{a} \xi m(\xi) y(\xi) \, d\xi + \lambda \sum_{k} m_{k} z_{k} (x_{k} + l_{k}) = 0$$
(2.2)

(сумма моментов, приложенных к балке, равна нулю).

Введем в рассмотрение функцию Грина $\hat{U}(x,\xi)$ как решение задачи

$$\frac{d^2}{dx^2}p(x)\frac{d^2}{dx^2}\hat{U}(x,\xi) + \hat{c}_0(\xi) + x\hat{c}_1(\xi) = \delta(x-\xi); \qquad (2.3)$$

$$p(x) \frac{d^2}{dx^2} \hat{U}(x,\xi) \Big|_{\substack{x=0\\x=a}} = 0;$$
(2.4)

$$\frac{d}{dx}p(x)\frac{d^2}{dx^2}\hat{U}(x,\xi)\Big|_{\substack{x=0\\x=a}} = 0$$
(2.5)

с условием ортогональности абсолютно жесткому перемещению

$$\int_{0}^{a} m(x)\hat{U}(x,\xi) \, dx = 0, \qquad \int_{0}^{a} xm(x)\hat{U}(x,\xi) \, dx = 0.$$
(2.6)

Функции $\hat{c}_0(\xi)$ и $\hat{c}_1(\xi)$ выберем так, чтобы система приложенных к балке сил была равновесной.

Итак, имеем две упругие системы (1.5)–(1.8) и (2.3)–(2.6). По теореме взаимности Бетти получаем интегральное представление решения

$$y(x) = \lambda \int_{0}^{a} \hat{U}(x,\xi)m(\xi)y(\xi)\,d\xi + \lambda \sum_{k=1}^{n} m_{k}z_{k}(\hat{U}(x,x_{k}) + l_{k}\hat{U}_{\xi}'(x,x_{k})) + c_{2}x + c_{1}.$$
 (2.7)

Константы c_1 и c_2 выберем так, чтобы выполнялись условия разрешимости (2.1), (2.2). Таким образом, имеем два соотношения для определения c_1 и c_2 :

$$\int_{0}^{a} m(x)(c_{2}x+c_{1}) dx = -\sum_{k=1}^{n} m_{k}z_{k} \equiv f_{1},$$
$$\int_{0}^{a} xm(x)(c_{2}x+c_{1}) dx = -\sum_{k=1}^{n} m_{k}z_{k}(x_{k}+l_{k}) \equiv f_{2}.$$

Следовательно,

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix},$$

где $\alpha_{11} = \int_0^a m(x) \, dx; \, \alpha_{12} = \alpha_{21} = \int_0^a xm(x) \, dx; \, \alpha_{22} = \int_0^a x^2 m(x) \, dx.$
Пусть $\beta = \alpha^{-1}, \, \text{т. e.}$

$$\left(\begin{array}{c}\beta_{11} \ \beta_{12}\\\beta_{21} \ \beta_{22}\end{array}\right) = \left(\begin{array}{c}\alpha_{11} \ \alpha_{12}\\\alpha_{21} \ \alpha_{22}\end{array}\right)^{-1}.$$

Тогда

$$c_1 = \beta_{11}f_1 + \beta_{12}f_2, \qquad c_2 = \beta_{21}f_1 + \beta_{22}f_2$$

где $\beta_{11} = \alpha_{12}/\det \alpha$; $\beta_{21} = \beta_{12} = -\alpha_{12}/\det \alpha$; $\beta_{22} = \alpha_{11}/\det \alpha$; $\det \alpha = \alpha_{11}\alpha_{22} - \alpha_{12}^2$. Таким образом,

$$c_{2}x + c_{1} = (\beta_{21}f_{1} + \beta_{22}f_{2})x + \beta_{11}f_{1} + \beta_{12}f_{2} = (\beta_{21}x + \beta_{11})\Big(-\sum_{k=1}^{n}m_{k}z_{k}\Big) + (\beta_{22}x + \beta_{12})\Big(-\sum_{k=1}^{n}m_{k}z_{k}(x_{k} + l_{k})\Big).$$

Итак, для определения амплиту
д $y(x), z_1, \ldots, z_n$ имеем систему интегроалгебраических уравнений

$$y(x) + (\beta_{21}x + \beta_{11}) \sum_{k=1}^{n} m_k z_k + (\beta_{22}x + \beta_{12}) \sum_{k=1}^{n} m_k z_k (x_k^* + l_k) =$$
$$= \lambda \int_0^a \hat{U}(x,\xi) m(\xi) y(\xi) \, d\xi + \lambda \sum_{k=1}^{n} m_k z_k (\hat{U}(x,x_k^*) + l_k \hat{U}'_{\xi}(x,x_k^*)); \quad (2.8)$$

 $-\lambda z_k = \lambda_k (y_k - z_k + l_k y'_k), \qquad k = 1, 2, \dots, n$ (2.9)

 $(x_k^*$ — точка крепления *k*-го осциллятора).

3. Структура конечномерной задачи. Дифференцированием соотношения (2.8) получаем дополнительные соотношения для y'(x)

$$y'(x) = -\beta_{21} \sum_{k=1}^{n} m_k z_k - \beta_{22} \sum_{k=1}^{n} m_k z_k (x_k^* + l_k) + \lambda \int_0^a \hat{U}'_x(x,\xi) m(\xi) y(\xi) \, d\xi + \lambda \sum_{k=1}^{n} m_k z_k (\hat{U}'_x(x,x_k^*) + l_k \hat{U}''_{\xi x}(x,x_k^*)). \quad (3.1)$$

Вычисляя интегральные слагаемые в (2.8) и (3.1) по квадратурной формуле [3], получим конечномерную задачу следующего вида:

$$E\left(\begin{array}{c}Y\\Y'\\z\end{array}\right) = \lambda D\left(\begin{array}{c}Y\\Y'\\z\end{array}\right).$$

Здесь $Y = (y(x_1), \ldots, y(x_N))^{\mathrm{T}}$ — вектор значений собственной функции в узлах интерполяции; $Y' = (y'(x_1^*), \ldots, y'(x_n^*))^{\mathrm{T}}$; $z = (z_1, \ldots, z_n)^{\mathrm{T}}$;

$$E = \begin{pmatrix} (N \times N) & (N \times n) & (N \times n) \\ I_N & 0 & \hat{\beta} \\ (n \times N) & (n \times n) & (n \times n) \\ 0 & I_n & \beta^* \\ (n \times N) & (n \times n) & (n \times n) \\ J & -L\Lambda & \Lambda \end{pmatrix},$$
(3.2)

;

 I_N, I_n — единичные матрицы размера $N \times N$ и $n \times n$ соответственно; $\hat{\beta}_{pk} = (\beta_{21}x_p + \beta_{11})m_k + (\beta_{22}x_p + \beta_{12})m_k(x_k^* + l_k); \beta_{21} = \beta_{12}$, следовательно, $\hat{\beta}_{pk} = \beta_{12}(x_p + x_k^*)m_k + \beta_{11}m_k + \beta_{22}x_px_k^*m_k + \beta_{22}x_pm_kl_k + \beta_{12}m_kl_k; \beta^*$ — матрица размера $n \times n$ с одинаковыми столбцами $\beta_{21}(m_k + \beta_{22}m_k(x_k^* + l_k)), k = 1, 2, \ldots, n; J$ — матрица размера $n \times N$, у которой в k-й строке $(k = 1, 2, \ldots, n)$ на месте j(k) стоит $-\lambda_k$, а остальные элементы нулевые $(j(k) - \mu$ слая функция, которая номеру осциллятора k ставит в соответствие номер узла сетки); $L = \text{diag}(l_1, \ldots, l_n); \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n);$

$$D = \begin{pmatrix} (N \times N) & (N \times n) & (N \times n) \\ A & 0 & U \\ (n \times N) & (n \times n) & (n \times n) \\ A_x & 0 & U_x \\ (n \times N) & (n \times n) & (n \times n) \\ 0 & 0 & I_n \end{pmatrix}$$

A — матрица размера $N \times N$; $A_{pk} = c_k \hat{U}(x_p, x_k)$; \hat{U} — функция Грина; c_k — коэффициенты квадратурной формулы [3]; U — матрица размера $N \times n$; $U_{pk} = m_k(\hat{U}(x_p, x_k^*) + l_k \hat{U}'_{\xi}(x_p, x_k^*))$; x_k^* — точки крепления осцилляторов; \hat{U}'_{ξ} — производная функции Грина по второму аргументу; A_x — матрица размера $n \times N$; $A_{xpk} = c_k \hat{U}'_x(x_p^*, x_k)$; x_p^* — точки крепления осцилляторов; \hat{U}'_{ξ} — производная функции Грина по второму аргументу; A_x — матрица размера $n \times N$; $A_{xpk} = c_k \hat{U}'_x(x_p^*, x_k)$; x_p^* — точки крепления осцилляторов; \hat{U}'_x — производная функции Грина по первому аргументу; U_x — матрица размера $n \times n$; $U_{xpk} = m_k(\hat{U}'_x(x_p^*, x_k^*) + l_k \hat{U}''_{\xi x}(x_p^*, x_k^*))$; $\hat{U}''_{\xi x}$ — вторая производная функции Грина.

Таким образом, требуются подпрограммы для вычисления функции Грина

$$\hat{U}(x,\xi) = \begin{cases} (\boldsymbol{f}_2(\xi), \hat{A}\boldsymbol{f}_1(x)), & x \leq \xi, \\ (\boldsymbol{f}_2(x), \hat{A}\boldsymbol{f}_1(\xi)), & x \geq \xi \end{cases}$$

и ее производных \hat{U}_x , \hat{U}_{ξ} , $\hat{U}_{\xi x}$ (векторы f_1 , f_2 длиной 4 и матрица \hat{A} размера 4×4 строятся из 8 массивов и 8 констант, вычисляемых подпрограммой).

Матрицы U, A_x, U_x вычисляются с использованием построенных функций Грина.

Выписав матрицы E и D, заметим, что матрица E устроена аналогично матрице E для продольных колебаний стержня [3] и, следовательно, может быть обращена аналитически. Из [3] следует, что нужно обратить матрицу $\Lambda - J^*m^*$, где

$$J^*m^* = (J - L\Lambda) \begin{pmatrix} \hat{\beta} \\ \beta^* \end{pmatrix} = J\hat{\beta} - L\Lambda\beta^*.$$

Далее получаем

$$J\hat{\beta} = -\Lambda \begin{pmatrix} \beta_{J(1),1} & \beta_{J(1),2} & \dots & \beta_{J(1),n} \\ \beta_{J(2),1} & \beta_{J(2),2} & \dots & \beta_{J(2),n} \\ \dots & \dots & \dots & \dots \\ \beta_{J(n),1} & \beta_{J(n),2} & \dots & \beta_{J(n),n} \end{pmatrix} = -\Lambda\hat{\beta}.$$

Эта матрица получается из $\hat{\beta}$ заменой x_p на x_p^* (т. е. на узлы крепления осцилляторов). Для того чтобы обратить эту матрицу, рассмотрим обращение матрицы $I_n + \hat{m}$ для продольных колебаний стержня [3]:

$$\hat{m} = \frac{1}{l} \begin{pmatrix} m_1 \ m_2 \ \dots \ m_n \\ m_1 \ m_2 \ \dots \ m_n \\ \dots \ \dots \ \dots \\ m_1 \ m_2 \ \dots \ m_n \end{pmatrix} = \frac{1}{l} \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} (m_1 \ m_2 \ \dots \ m_n).$$

Эта матрица имеет единственный собственный вектор $(1, 1, ..., 1)^{\mathrm{T}}$ и соответствующее собственное значение $(1/l) \sum m_i$. Матрица \hat{m} — проектор (с точностью до скалярного множителя). Любой вектор x матрица \hat{m} переводит в вектор, коллинеарный $(1, 1, ..., 1)^{\mathrm{T}}$. Таким образом

Таким образом,

$$(I_n + \hat{m})^{-1} = I_n - \frac{1}{1 + (1/l) \sum m_i} \hat{m},$$

так как $\hat{m}^2 = ((1/l) \sum m_i) \hat{m} = \lambda \hat{m}$. Если обозначить через λ собственное значение матрицы \hat{m} (*n*-кратное), то получим

$$(I_n + \hat{m})^{-1} = I_n - \frac{1}{\lambda + 1} \hat{m}.$$

Как обобщить эту формулу на случай проектора в двумерное подпространство?

ПРЕДЛОЖЕНИЕ. Если $\hat{m}^2 = \lambda \hat{m}$, то

$$(I_n + \hat{m})^{-1} = I_n - \frac{1}{\lambda + 1} \hat{m}.$$

Для поперечных колебаний балки нужно обратить матрицу $I + \hat{\beta}_*$ размера $n \times n$, причем $\hat{\beta}_* = \hat{\beta}^{(1)} + \hat{\beta}^{(2)}$, где

$$\hat{\beta}_{pk}^{(1)} = (\beta_{21}(x_p^* + l_p) + \beta_{11})m_k,$$

$$(\hat{\beta}^{(1)})^2 = \lambda_1 \hat{\beta}^{(1)}, \qquad \lambda_1 = \sum_{k=1}^n m_k (\beta_{21}(x_k^* + l_k) + \beta_{11});$$

$$\hat{\beta}_{pk}^{(2)} = (\beta_{22}(x_p^* + l_p) + \beta_{12})m_k (x_k^* + l_k),$$

$$(\hat{\beta}^{(2)})^2 = \lambda_2 \hat{\beta}^{(2)}, \qquad \lambda_2 = \sum_{k=1}^n m_k (x_k^* + l_k) (\beta_{22}(x_k^* + l_k) + \beta_{12});$$

$$\hat{\beta}^{(2)} \hat{\beta}^{(1)} = \lambda_{21} \hat{\beta}^{(2)} Q^{-1}, \qquad \lambda_{21} = \sum_{k=1}^n m_k (x_k^* + l_k) (\beta_{21}(x_k^* + l_k) + \beta_{12}),$$

$$\hat{\beta}^{(1)} \hat{\beta}^{(2)} = \lambda_{12} \hat{\beta}^{(1)} Q^{-1}, \qquad \lambda_{12} = \sum_{k=1}^n m_k (\beta_{22}(x_k^* + l_k) + \beta_{12}),$$

$$Q = \text{diag} (x_1^* + l_1, \dots, x_n^* + l_n).$$
(3.3)

Используя эти соотношения, получим

$$(I + \hat{\beta}_*)^{-1} = (I + \hat{\beta}^{(1)} + \hat{\beta}^{(2)})^{-1} = (I + (I + \hat{\beta}^{(1)})^{-1} \hat{\beta}^{(2)})^{-1} (I + \hat{\beta}^{(1)})^{-1} = = \left(I + \left(I - \frac{1}{\lambda_1 + 1} \hat{\beta}^{(1)} \hat{\beta}^{(2)}\right)^{-1}\right) \left(I - \frac{1}{\lambda_1 + 1} \hat{\beta}^{(1)}\right), \left(I - \frac{1}{\lambda_1 + 1} \hat{\beta}^{(1)} \hat{\beta}^{(2)}\right)^{-1} = \left(I + \hat{\beta}^{(2)} - \frac{\lambda_{12}}{1 + \lambda_1} \hat{\beta}^{(1)} Q\right)^{-1}.$$

Введем следующие обозначения:

$$\hat{\beta}^{(3)} = \hat{\beta}^{(2)} - \frac{\lambda_{12}}{1+\lambda_1} \hat{\beta}^{(1)} Q = \left(\beta_{22}(x_p^* + l_p) + \beta_{12} - \frac{\lambda_{12}}{1+\lambda_1} \left(\beta_{21}(x_p^* + l_p) + \beta_{11}\right)\right) m_k(x_k^* + l_k),$$

$$(\hat{\beta}^{(3)})^2 = \lambda_3 \hat{\beta}^{(3)},$$
(3.6)

$$\lambda_3 = \sum_{k=1}^n \left(\left(\beta_{22}(x_k^* + l_k) + \beta_{12} - \frac{\lambda_{12}}{1 + \lambda_1} \left(\beta_{21}(x_k^* + l_k) + \beta_{11} \right) \right) m_k(x_k^* + l_k) \right).$$

Тогда $(\ldots)^{-1} = I - \hat{\beta}^{(3)} / (\lambda_3 + 1)$. В результате получаем

$$(I + \hat{\beta}_*)^{-1} = \left(I - \frac{1}{\lambda_3 + 1}\,\hat{\beta}^{(3)}\right) \left(I - \frac{1}{1 + \lambda_1}\,\hat{\beta}^{(1)}\right) = I - \frac{1}{\lambda_3 + 1}\,\hat{\beta}^{(3)} - \frac{1}{1 + \lambda_1}\,\hat{\beta}^{(1)} + \frac{\hat{\beta}^{(3)}\hat{\beta}^{(1)}}{(\lambda_3 + 1)(\lambda_1 + 1)}.$$

Входящие в эту формулу величины определены в (3.3)-(3.6). Обозначим

$$\lambda_{31} = \sum_{q=1}^{n} m_q (x_q^* + l_q) (\beta_{21} (x_q^* + l_q) + \beta_{11}).$$

Тогда

$$(I + \hat{\beta}_*)_{pk}^{-1} = \delta_{pk} - \frac{m_k}{\lambda_1 + 1} \left(\beta_{21}(x_p^* + l_p) + \beta_{11}\right) + \frac{m_k}{\lambda_3 + 1} \left(\frac{\lambda_{31}}{\lambda_1 + 1} - x_k^* - l_k\right) \left(\beta_{22}(x_p^* + l_p) + \beta_{12} - \frac{\lambda_{12}}{1 + \lambda_1} \left(\beta_{21}(x_p^* + l_p) + \beta_{11}\right)\right),$$
$$\delta_{pk} = \begin{cases} 1, & p = k, \\ 0, & p \neq k. \end{cases}$$

Матрица Е определена в (3.2). Если обозначить

$$J^* = (J - L\Lambda), \qquad m^* = \begin{pmatrix} \hat{\beta} \\ \beta^* \end{pmatrix},$$

то после формальной замены $(J \to J^*, m \to m^*, N \to N+n)$ эта матрица будет иметь тот же вид, что и матрица E в случае продольных колебаний стержня [3]. В результате получаем

$$E^{-1} = \begin{pmatrix} I_N + \hat{\beta}\hat{\Lambda}^*J & -\hat{\beta}\hat{\Lambda}^*L\Lambda & -\hat{\beta}\hat{\Lambda}^* \\ \beta^*\hat{\Lambda}^*J & I_n - \beta^*\hat{\Lambda}^*L\Lambda & -\beta^*\hat{\Lambda}^* \\ -\hat{\Lambda}^*J & \hat{\Lambda}^*L\Lambda & \hat{\Lambda}^* \end{pmatrix},$$
$$E^{-1}D = \begin{pmatrix} (I_N + \hat{\beta}\hat{\Lambda}^*JA) - \hat{\beta}\hat{\Lambda}^*L\Lambda A_x & 0 & (I_N + \hat{\beta}\hat{\Lambda}^*J)U - \hat{\beta}\hat{\Lambda}^*L\Lambda U_x - \hat{\beta}\hat{\Lambda}^* \\ A_x & 0 & U_x \\ -\hat{\Lambda}^*JA + \hat{\Lambda}^*L\Lambda A_x & 0 & -\hat{\Lambda}^*JU + \hat{\Lambda}^*L\Lambda U_x + \hat{\Lambda}^* \end{pmatrix},$$

где $\hat{\Lambda}^* = (I + \hat{\beta}_*)^{-1} \Lambda^{-1}$. Переставляя второй и третий столбцы, для сохранения подобия нужно переставить вторую и третью строки. В результате получаем

$$E^{-1}D = \begin{pmatrix} (I_N + \hat{\beta}\hat{\Lambda}^*JA) - \hat{\beta}\hat{\Lambda}^*L\Lambda A_x & (I_N + \hat{\beta}\hat{\Lambda}^*J)U - \hat{\beta}\hat{\Lambda}^*L\Lambda U_x - \hat{\beta}\hat{\Lambda}^* \\ -\hat{\Lambda}^*JA + \hat{\Lambda}^*L\Lambda A_x & -\hat{\Lambda}^*JU + \hat{\Lambda}^*L\Lambda U_x + \hat{\Lambda}^* \\ A_x & U_x \end{pmatrix}$$

Нулевой, последний столбец не выписан. Собственный вектор этой матрицы $(Y, z, Y')^{T}$, т. е. в левом верхнем углу стоит искомая блочная матрица размера 2×2 .

4. Результаты численных расчетов. В численных расчетах выписанные выше уравнения приводились к безразмерному виду. В качестве характерных массы и длины принимались масса балки без осцилляторов и длина балки. В качестве характерного времени принималась величина $1/W_{\text{max}}$, где W_{max} — характерная частота в герцах (конец расчетного диапазона). Расчеты проводились как с методической целью, так и с целью исследовать возникновение параметрического резонанса в данной сложной колебательной системе.

ПРИМЕР 1. Рассматривается стальная балка круглого сечения: $E = 2,1 \cdot 10^6 \text{ кг/см}^2$; $\rho = 7,8/981 \text{ г} \cdot \text{c}^2/\text{см}^4$; a = 10 м; R = 0,1 м. Здесь и далее расчетный диапазон составляет $0 \div 30 \text{ Гц}$, т. е. характерное время равно 1/30 с. Параметры, входящие в уравнение колебаний балки, имели следующие безразмерные значения: $EI_x = 0,029\,346\,1$; m = 1,0. В результате вычислений получено безразмерное значение квадрата круговой частоты системы $\lambda = (2\pi w/w_{\text{max}})^2$.

В примере 1 четыре осциллятора с массами $m_1 = 0,1, m_2 = 0,7, m_3 = 0,7, m_4 = 0,1$ подвешены в точках $x_1 = 0,2, x_2 = 0,4, x_3 = 0,6, x_4 = 0,8$ на штангах длиной $l_1 = 0,5, l_2 = 0,1, l_3 = 0,1, l_4 = 0,5$. Все частоты осцилляторов одинаковы: $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \pi^2/25 = 0,3948$, т. е. равны 3 Гц.

	Таблица 1					
Номер собствен- ного значения	N = 9	N = 19	N = 39	N = 79	N = 99	
1	0,3724	$0,\!37224$	$0,\!37220$	$0,\!372196$	$0,\!372195$	
2	$0,\!385826$	$0,\!385825$	0,385825	$0,\!385824$	$0,\!385824$	
3	0,5476	$0,\!546973$	0,54680	$0,\!546760$	$0,\!546754$	
4	1,267	1,2656	1,2653	1,26522	$1,\!26522$	
5	19	17	17	16,82	$16,\!8000$	
6	129	121	116	114,8	$114,\!620$	
7	665	504	451	436	$434,\!111$	
8	1817	1427	1247	1194	1187,46	

Таблица 2

Номер	$\lambda = 0.372$	$\lambda=0,\!372195$		$\lambda=0,\!385824$		$\lambda = 0,546754$		$\lambda = 1,265220$	
лятора	N = 99	N = 9	N = 99	N = 9	N = 99	N = 9	N = 99	N = 9	
1	1,000 000	1,000 000	$0,\!470687$	0,463	$0,\!188009$	0,18	$0,\!422319$	$0,\!43$	
2	-0,06630089	-0,665	$0,\!383055$	$0,\!38301$	$-0,\!470454$	-0,469	$0,\!287537$	0,29	
3	-0,00477738	-0,49	-0,608918	-0,608	-0,0248762	-0,0241	$0,\!462628$	0,47	
4	-0,308042	-0,307	1,000000	1,000 000	1,000000	1,000 000	1,000000	1,000 000	

Таблица З

Номер собствен- ного значения	N = 9	N = 19	N = 39	N = 79	N = 99
1	11,3	11,0	10,93	10,906	10,9030
2	22,51	$22,\!49$	22,46	22,456	22,4547
3				340,7	339,737
4				398	396,732
5				1068	1066, 44
6				2632	$2639,\!62$
7					4820,27
8					$9162,\!91$

Примечание. Прочерки означают, что расчеты на соответствующих сетках не проводились.

В табл. 1 приведены безразмерные значения квадратов круговой частоты. В последней графе (в расчетной сетке 99 точек) приведены значения с шестью значащими цифрами, в остальных графах — соответствующим образом округленные собственные значения. Аналогично приводятся результаты в табл. 2, 3. В табл. 2 приведены значения амплитуд осцилляторов для расчета, соответствующего данным табл. 1.

ПРИМЕР 2. Рассматривается круглая балка переменного сечения: $E = 2,1 \cdot 10^6 \text{ kr/cm}^2$; $\rho = 7,8/981 \text{ r} \cdot \text{c}^2/\text{cm}^4$; $a = 10 \text{ m} (a = a_1 + a_2 + a_3)$; $a_1 = a_3 = 3 \text{ m}$; $a_2 = 4 \text{ m}$; R = 0,1 m. Безразмерные значения жесткости на изгиб равны 0,029 3461 на первом и третьем участках и 2,25 на втором. Безразмерные значения массы равны 0,666 666 на первом и третьем участках и 1,5 на втором. Расположение осцилляторов, их массы, а также длины штанг те же, что в примере 1, но безразмерные частоты осцилляторов другие: $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 100\pi = 986,9600$, т. е. размерное значение равно 150 Гц. В табл. 3 приведены результаты расчетов собственных значений.

Результаты проведенных расчетов показывают, что с использованием предложенной модели можно описать возникновение параметрических резонансов при колебаниях балки со свободными концами переменных сечения и массы, к которой на штангах подвешены сосредоточенные массы.

ЛИТЕРАТУРА

- 1. Алгазин С. Д. Численные алгоритмы без насыщения в классических задачах математической физики. М.: Науч. мир, 2002.
- 2. Алгазин С. Д. Численное исследование резонансов в некоторых сложных колебательных системах // Изв. АН СССР. Механика твердого тела. 1991. № 3. С. 155–159.
- 3. Алгазин С. Д. Численные алгоритмы классической матфизики. 9. Численное исследование свободных колебаний стержня с осцилляторами. М., 2004. (Препр. / РАН. Ин-т проблем механики; № 755).
- 4. Алгазин С. Д. Численные алгоритмы классической матфизики. 10. Численное исследование свободных колебаний балки с осцилляторами. М., 2005. (Препр. / РАН. Ин-т проблем механики; № 773).

Поступила в редакцию 11/II 2005 г., в окончательном варианте — 30/VIII 2005 г.