УДК 624.131; 550.834

ИДЕНТИФИКАЦИЯ ПЕРИОДИЧЕСКИХ ИЗМЕНЕНИЙ НАПРЯЖЕННОГО СОСТОЯНИЯ ГРУНТОВ ПО ИЗМЕНЕНИЯМ ПЛОТНОСТИ ПОТОКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

В. И. Шейнин, Б. В. Левин^{*}, Э. А. Мотовилов, А. А. Морозов, А. В. Фаворов

Институт оснований и подземных сооружений им. Н. М. Герсеванова, 109428 Москва * Институт океанологии РАН, 117218 Москва

Приведены примеры записей вариаций сигнала ИК-радиометра, вызываемых изменениями напряжений в образце грунта, и синхронных с ними показаний тензометрических датчиков, по которым вычисляются изменения напряжений. Построен алгоритм обработки этих записей. Показано удовлетворительное совпадение вариаций напряжений во времени, определенных по данным синхронных радиационных и тензометрических измерений. Полученные результаты показывают эффективность ИК-диагностики периодических изменений во времени напряженного состояния грунтов.

Разрабатываемая методика диагностики вариаций во времени напряжений в грунтах основана на использовании эффекта изменения температуры упругой среды при адиабатическом деформировании [1], при котором приращение первого инварианта тензора напряжений $\Delta \Pi$ вызывает приращение температуры в точке среды $\Delta T_a = A_m T_0 \Delta \Pi$, где T_0 — начальная абсолютная температура; $A_m = \alpha/(\rho C_p)$; α — коэффициент линейного расширения; C_p — удельная теплоемкость при постоянном давлении; ρ — плотность материала. При таком режиме деформирования вариации температуры $\delta_a T(t)$ во времени t подобны (с коэффициентом подобия $A_m T_0$) функции $\delta \Pi(t)$:

$$\delta_a T(t) = A_m T_0 \delta \Pi(t). \tag{1}$$

Получение информации о $\delta\Pi(t)$ по измерениям $\delta_a T(t)$ представляется достаточно очевидным, однако для геоматериалов трудность состоит в том, что значения $\delta_a T(t)$ имеют порядок 0,001 К. Кроме того, условия реальных геомеханических и геофизических экспериментов не позволяют использовать стандартные методы температурных измерений [2], особенно при измерениях в грунтах. Эти трудности преодолеваются (см., например, [3, 4]) путем использования техники измерений малых вариаций температуры, основанной на зависимости мощности инфракрасного (ИК) излучения с поверхности тела от ее температуры $W(T) = \varepsilon_T \omega T^4$ ($\varepsilon_T < 1$ — коэффициент излучательной способности; ω — постоянная Стефана — Больцмана) [5, 6]. Преобразовав W(T(t)) в зависимость $\delta W(t) =$ $W(T(t)) - W(T_0)$, линеаризуя соответствующие $T_a(t)$ вариации $\delta W_a(t) = \delta W(T_a(t))$ с учетом малости $\delta T_a(t)/T_0$ и обозначая $A_c = 4\varepsilon_T \omega T_0$, получим

$$\delta W_a(t) = A_c \delta T_a(t) / T_0 = A_c A_m \delta \Pi(t), \tag{2}$$

т. е. $\delta W_a(t)$ и $\delta \Pi(t)$ подобны. Вследствие теплообмена при неадиабатическом режиме деформирования и постоянстве T_0 вместо (1) для вариаций температуры $\delta T(t)$ имеем урав-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-05-64194).

нение

$$\delta T(t) = \delta_a T(t) + \delta_h T(t) = A_m \delta \Pi(t) T_0 + \delta_h T(t), \tag{3}$$

где $\delta_h T(t) = \delta_h (T(t) - T_0)$ — изменение температуры, необходимое для восстановления теплового равновесия, нарушенного деформированием [5]. Из (2), (3) следует

$$\delta W(t) = A_c A_m \delta \Pi(t) + A_c \delta_h T(t) / T_0.$$
⁽⁴⁾

Допустим, что составляющая $\delta U_e(t)$ вариаций результатов ИК-измерений, определяемая вариациями $\delta W(t)$, пропорциональна им с коэффициентом A_r , зависящим от параметров аппаратуры. Тогда с учетом (3), (4) получаем

$$\delta U(t) = \delta U_e(t) + \varepsilon(t) = \delta U_a(t) + \delta U_h(t) + \varepsilon(t) = A\delta \Pi(t) + A_r A_c \delta_h T(t) / T_0 + \varepsilon(t).$$
(5)

В соотношениях (5) $\delta U_a(t)$ и $\delta U_h(t)$ — слагаемые $\delta U_e(t)$, соответствующие $\delta_a T(t)$ и $\delta_h T(t)$ в (3); $A = A_r A_c A_m$; величина $\varepsilon(t)$ учитывает наличие аппаратурных шумов в функции $\delta U(t)$, описывающей результаты ИК-измерений при отсутствии внешних тепловых воздействий. Используя функциональные зависимости (1)–(5) между вариациями $\delta U(t)$ и $\delta \Pi(t)$, можно попытаться идентифицировать непрерывные изменения напряженного состояния геоматериалов во времени по данным терморадиационных измерений. (В работах [3, 4] используются соотношения между конечными мгновенными приращениями ΔU и $\Delta \Pi$.)

В условиях, когда напряжения изменяются во времени достаточно быстро, можно не учитывать функцию $\delta_h T(t)$ и ограничиться анализом данных измерений в предположении квазиадиабатичности, при этом функция $\delta \Pi(t)$ легко определяется по экспериментальной зависимости $\delta U(t)$. Для обоснования данного предположения и определения границ его применимости при различных режимах изменения нагрузки во времени проводились серии экспериментов, в которых вариации напряжений идентифицировались не только по измерениям мощности ИК-излучения, но и по записям показаний электромеханических датчиков. В [3] использована система измерения, преобразования и автоматической передачи в компьютер аналоговых сигналов от ИК-радиометра $V_w(t)$ и мессдозы $V_l(t)$, по показаниям которой определяются вариации нагрузки на грунтовый образец [7]. Выполненная в работе [3] обработка полученных синхронизированных записей при импульсных изменениях нагрузки во времени показала, что по данным терморадиационных измерений можно фиксировать моменты "скачков" напряжений в грунтах и оценивать их относительные величины.

В описываемых экспериментах, в отличие от рассмотренных в [3], нагрузка на образец и, следовательно, напряжения в нем изменялись во времени непрерывно по зависимости, близкой к периодической. Схема установки для нагружения образцов и расположение измерительных датчиков приведены в работе [3]. Периодический характер изменений нагрузки во времени достигался плавными поворотами штурвала пресса, производимыми через каждые 1,0–1,4 с.

Значения выходных сигналов $V_w(\tau)$ (в вольтах), получаемые в результате прохождения первичного сигнала с ИК-радиометра через предварительный усилитель, первый канал аналого-цифрового преобразователя и конечный усилитель, передаются в компьютер в моменты $\tau_k = k\Delta \tau$ (k = 0, ..., N; $N = \tau_N / \Delta \tau$; τ_N — продолжительность опыта; $\Delta \tau$ заданный шаг по времени). Через τ обозначено время, отсчитываемое с момента включения аппаратуры. Преобразованные и усиленные сигналы с мессдозы $V_l(\tau_k)$ синхронно с выходными сигналами $V_w(\tau_k)$ передаются в компьютер. Участки получаемых записей до начала изменений нагрузки ($\tau < \tau_s$) и после окончания этих изменений ($\tau > \tau_f$) не содержат важной информации с точки зрения идентификации периодических изменений напряжений. Поэтому далее рассматриваются функции $V_w(t)$ и $V_l(t)$ ($t = \tau - \tau_s, 0 \leq t \leq L_t$,

 $L_t = \tau_f - \tau_s)$ в интервале времени $\tau_s \leqslant \tau \leqslant \tau_f$ продолжительностью L_t , в течение которого происходили изменения нагрузки.

Характерные графики функций $V_w(t)$ и $V_l(t)$, полученные в опыте с песчаным грунтом, представлены на рис. 1 (линии 1, 2). Эти графики имеют колеблющийся характер. Вместе с тем у обеих кривых имеется низкочастотная составляющая, которая для выходного сигнала с мессдозы $V_l(\tau)$ определяется изменениями условий приложения нагрузки. В записи данных ИК-измерений кроме низкочастотной составляющей, связанной с изменениями нагрузки, может содержаться составляющая, вызываемая изменениями внешних тепловых условий во время опыта и представляющая собой, по существу, низкочастотный шум. На рис. 1 приведены низкочастотные составляющие $F_w(t)$ и $F_l(t)$ (линии 3, 4) функций $V_w(t)$ и $V_l(t)$, для которых использовалась квадратичная аппроксимация на интервале определения этих функций. При статистическом анализе данных измерений вместо $V_w(t)$ и $V_l(t)$ использовались функции

$$U_w(t) = V_w(t) - F_w(t), \qquad U_l(t) = V_l(t) - F_l(t), \tag{6}$$

практически не зависящие от низкочастотных составляющих и имеющие нулевые средние значения.

Перед каждой серией экспериментов проводилась тарировка выходных показаний каналов ИК-радиометра ΔV_w и мессдозы ΔV_l по изменениям суммы главных напряжений $\Delta \Pi$ в образце. Для этого к образцу прикладывались ступенчатые нагрузки ΔQ_m , величина которых определялась по показаниям эталонного динамометра, установленного между мессдозой и плитой пресса. Величина $\Delta \Pi_m$, соответствующая ΔQ_m , вычислялась по формуле

$$\Delta \Pi_m = (\Delta Q_m / S)(1 + 2\xi),$$

где ξ — коэффициент бокового давления в грунте внутри обоймы; S — площадь штампа. При этом для каждого $\Delta \Pi_m$ измерялись "скачки" уровней выходных сигналов радиометра ΔV_{wm} и мессдозы ΔV_{lm} . Затем осреднением величин $\Delta V_{wm}/\Delta \Pi_m$ и $\Delta V_{lm}/\Delta \Pi_m$ оценивались коэффициенты $A_{w\Pi} = A$ и $A_{l\Pi}$ перехода от вариаций выходных сигналов ΔV_w и ΔV_l (в вольтах) к вариациям $\Delta \Pi$ (в мегапаскалях). В опытах с образцом песчаного грунта ($\xi \approx 0.49$) были получены значения $A_{w\Pi} \approx 0.28$ В/МПа, $A_{l\Pi} \approx 1.21$ В/МПа. Затем вычислялись вариации

$$\delta \Pi_w(t) = U_w(t) (A_{w\Pi})^{-1}, \qquad \delta \Pi_l(t) = U_l(t) (A_{l\Pi})^{-1}, \tag{7}$$

графики которых для опыта с песчаным грунтом приведены на рис. 2 (линии 1, 2 соответственно). Функции $\delta \Pi_w(t)$ и $\delta \Pi_l(t)$ имеют амплитуду порядка 0,3 МПа и за время

Рис. 2

опыта (около 22 с) совершают приблизительно по 20 колебаний. Результаты других опытов (после описанных преобразований) аналогичны приведенным выше. На рис. 2 видно, что функция $\delta \Pi_w(t)$ достаточно близка к функции $\delta \Pi_l(t)$.

Для количественной оценки различия между $\delta \Pi_w(t)$ и $\delta \Pi_l(t)$ требуется статистический анализ этих функций. В рассмотренном интервале времени амплитуда функций $\delta \Pi_w(t)$ и $\delta \Pi_l(t)$ изменяется незначительно, поэтому в этом интервале будем считать их реализациями стационарных случайных процессов [8]. Вычислим вероятностные характеристики этих процессов. Средние значения E_{Π_w} и E_{Π_l} равны нулю вследствие перехода к функциям $U_w(t)$ и $U_l(t)$ по формулам (6), а стандарты $S_{\Pi_w} = (K_{\Pi_w}(0))^{0,5} = 0,184$ МПа, $S_{\Pi_l} = (K_{\Pi_l}(0))^{0,5} = 0,147$ МПа различаются примерно на 25%. Корреляционные функции вычислялись по формуле

$$K_Y(s) = (M-m)^{-1} \sum_{i=1}^{M-m-1} (Y_i - E_Y)(Y_{i+m} - E_Y),$$

где Y(t) — одна из функций $\delta \Pi_w(t)$ или $\delta \Pi_l(t)$; $s \in [0; 0, 3L_t]$; $m = s/\Delta t$; $M = L_t/\Delta t$. Графики функций $K_{\Pi_w}(s)$ и $K_{\Pi_l}(s)$ приведены на рис. 3 (линии 1, 2). Видно, что линии 1 и 2 практически совпадают при s > 0,1 с, а различие вблизи нуля определяется влиянием случайных высокочастотных ошибок в записи $V_w(\tau)$ [9]. Отметим, что для иллюстрации были выбраны результаты опыта, в котором даже визуально наблюдается высокочастотная шумовая составляющая этой функции (см. рис. 1).

Рис. 3

Выполнив преобразования Фурье функций $K_{\Pi_w}(s)$ и $K_{\Pi_l}(s)$, определим спектральные плотности $H_{\Pi_w}(\nu)$ и $H_{\Pi_l}(\nu)$ [8, 9]. Зависимости H_{Π_w} , H_{Π_l} от частоты ν представлены на рис. 4 (линии 1, 2). Приведенные на рис. 3, 4 графики корреляционных функций и плотностей практически совпадают для функций $\delta \Pi_w(t)$ и $\delta \Pi_l(t)$. Аналогичное совпадение имеет место и в других экспериментах. Существенно, что положения максимумов плотностей $H_{\Pi_w}(\nu)$ и $H_{\Pi_l}(\nu)$ совпадают между собой в каждом эксперименте. Таким образом, записи сигналов ИК-радиометра позволяют оценить статистические параметры эволюции напряжений во времени (см. рис. 3, 4).

При сравнении графиков $\delta \Pi_w(t)$ и $\delta \Pi_l(t)$ следует учитывать их сдвиг относительно друг друга по времени t_0 . Указанная задержка во времени появляется вследствие инерционности используемого первичного ИК-преобразователя РТН-31 [6]. Для определения t_0 получим оценки взаимной нормированной корреляционной функции $K_{\Pi_l\Pi_w}(s)$ зависимостей $\delta \Pi_w(t)$ и $\Delta \Pi_l(t)$:

$$K_{\Pi_l \Pi_w}(s_m) = ((M-m)S_{\Pi_l}S_{\Pi_w})^{-1} \sum_{i=1}^{M-m-1} \delta \Pi_{l_i} \, \delta \Pi_{w_{i+m}}$$

График функции $K_{\Pi_l\Pi_w}(s)$ приведен на рис. 5. Согласно [8] значение t_0 соответствует положению максимума этой функции на оси s, т. е. $t_0 = 0,2$ с. Функция $\delta \Pi_w(t+t_0)$ оказывается еще ближе к $\delta \Pi_l(t)$, чем $\delta \Pi_w(t)$ (см. рис. 2).

Проведенные исследования показывают эффективность предлагаемой методики и представляют интерес в связи с тем, что практическое применение ИК-радиометрии для

Рис. 5

полевых измерений вариаций напряженного состояния грунтовых массивов может существенно расширить возможности экспериментальных наблюдений за происходящими в них динамическими и сейсмическими процессами.

ЛИТЕРАТУРА

- 1. Ландау Л. Д., Лифшиц Е. М. Теория упругости. М.: Наука, 1987.
- 2. **Технические** средства диагностирования: Справ. / Под ред. В. В. Клюева. М.: Машиностроение, 1989.
- 3. Шейнин В. И., Левин Б. В., Мотовилов Э. А., Морозов А. А. Фиксация моментов и определение интенсивности изменений напряженного состояния грунтов по изменениям плотности потока инфракрасного излучения с их поверхности // ПМТФ. 1998. Т. 39, № 5. С. 179–185.
- Sheinin V. I., Levin B. W., Motovilov E. A. Infrared diagnostics of stress variations in rock: the possibilities for monitoring prelimit mechanical processes in the earth's crust // J. Earthquake Prediction Res. 1997. V. 6, N 1. P. 138–147.
- 5. Лыков А. В. Теория теплопроводности. М.: Высш. шк., 1967.
- 6. Криксунов Л. З. Справочник по основам инфракрасной техники. М.: Сов. радио, 1978.
- 7. **Лазебник Г. Е., Смирнов А. А., Иванов Д. Б.** Комплекс приборов и устройств для измерения давления грунта // Основания, фундаменты и механика грунтов. 1973. № 2. С. 16–19.
- 8. **Хаттон Л., Уордингтон М., Мейкин Дж.** Обработка сейсмических данных. Теория и практика. М.: Мир, 1989.
- 9. Дженкинс Г., Ватс Д. Спектральный анализ и его приложения. М.: Мир, 1972.

Поступила в редакцию 17/VIII 1999 г.