УДК 551.50, 519.6

Оценка успешности численного прогноза элементов погоды по мезомасштабной модели атмосферы высокого разрешения TSUNM3

А.В. Старченко, И.В. Кужевская, Л.И. Кижнер, Н.К. Барашкова, М.А. Волкова, А.А. Барт*

Национальный исследовательский Томский государственный университет 634050, г. Томск, пр. Ленина, 36

Поступила в редакцию 3.07.2018 г.; после доработки 17.09.2018 г.

Представлена оценка качества мезомасштабной модели высокого разрешения TSUNM3, созданной в Томском государственном университете и предназначенной для прогноза элементов погоды у поверхности земли и в пограничном слое атмосферы. Модель используется в научных исследованиях для прогноза состояния атмосферы на ограниченной территории в районе г. Томска до высоты 2,5 км с заблаговременностью до 40 ч. Она имеет более высокое пространственное разрешение (1 км), чем оперативно функционирующая на территории Сибирского региона технология COSMO-Ru14-Sib (шаг сетки 13,2 км). Успешность прогноза температурно-влажностных и динамических характеристик состояния атмосферы моделью TSUNM3 сопоставима с успешностью существующих оперативных мезомасштабных моделей.

Ключевые слова: прогностическая модель высокого разрешения TSUNM3, погодные условия, оценка качества прогноза, характеристики качества прогноза; high resolution numerical weather prediction model TSUNM3, weather conditions, forecast verification, forecast quality characteristics.

Введение

В настоящее время для краткосрочного и сверхкраткосрочного прогнозов погоды создаются и совершенствуются численные модели высокого пространственного разрешения (с горизонтальным разрешением от нескольких сотен метров до нескольких километров), позволяющие предсказывать мезомасштабные явления для разных районов.

Во многих странах наиболее широкое распространение получила мезомодель WRF (Weather Research and Forecasting, USA), которая активно применяется для решения многих практических задач. В частности, в работе [1] представлены результаты использования модели для прогноза ветра над территорией Китая с разрешением 9 км. При моделировании конвективных процессов модель реализуется с разрешением от 3 до 10 км [2–5]. Для района Владивостока (включая о-в Русский) разработан вариант модели WRF–ARW с горизонтальным разрешением до 500 м для системы краткосрочного численного прогноза с заблаговременностью до 3 сут [6]. Метеорологическим агентством СМА (China) разработана модель GRAPES_meso с разрешением 3–15 км для прогноза основных метеорологических величин и опасных явлений [7]. Для территории РФ одна из основных региональных моделей, которая используется в настоящее время в Гидрометцентре России для прогноза элементов погоды, — модель СОЅМО-Ru, созданная в рамках международного сотрудничества стран Европы и России [8, 9]. Для европейской территории РФ реализованы версии модели COSMO с шагом сетки от 1,1 до 13,2 км, а для Сибирского региона функционирует технология COSMO-Ru14-Sib, численные прогнозы по которой проводятся параллельно прогнозам по модели ICON в Немецкой метеослужбе [10].

Опубликованные результаты испытаний моделей и использование их в оперативной практике показывают, что развитие и верификация мезомасштабных (региональных) моделей по-прежнему актуальны как в крупных прогностических центрах, так и на региональном уровне. Например, для отдельных регионов Сибири, где действующая модель COSMO-Ru14-Sib имеет размер области счета 3500 на 5000 км с разрешением более 13 км, что явно не достаточно для выявления атмосферных процессов размерностью γ-мезомасштаба (2–20 км).

Верификация прогнозов погоды (оценка качества) является обязательным этапом при разработке и/или усовершенствовании численных моделей. Такая научная оценка предусматривает расчет того или иного ряда показателей успешности с целью определения сильных и слабых сторон методов и технологий прогнозирования, а также для определения

^{*} Александр Васильевич Старченко (starch@math. tsu.ru); Ирина Валерьевна Кужевская (ivk@sibmail.com); Любовь Ильинична Кижнер (kdm@mail.tsu.ru); Надежда Константиновна Барашкова (nkbar@sibmail.com); Марина Александровна Волкова (mv2101@mail.ru); Андрей Андреевич Барт (bart@math.tsu.ru).

[©] Старченко А.В., Кужевская И.В., Кижнер Л.И. и др., 2019

конкретных путей развития и совершенствования программных комплексов.

В статье представлена оценка качества краткосрочных прогнозов по мезомасштабной модели высокого разрешения TSUNM3, созданной в Томском государственном университете. Расчеты по модели проводятся на ресурсной базе вычислительного центра TГУ и предназначены для прогноза элементов погоды и атмосферных явлений в пограничном слое атмосферы [11–13].

Материалы и методы исследования

Мезомасштабная модель TSUNM3 прогнозирует составляющие скорости ветра и температурновлажностные характеристики в пограничном слое атмосферы на 29 вертикальных уровнях (до 2,5 км) для площади 50×50 км (шаг сетки 1 км с центром в г. Томске). Инициализация модели проводится на основе результатов численного прогноза по оперативной глобальной модели ПЛАВ Гидрометцентра РФ [14] (на момент времени 00:00 UTC на уровнях 1000, 925 и 850 гПа).

Основные особенности модели TSUNM3:

 негидростатическое квазисжимаемое приближение для уравнений движения [15];

 координатная система с переменным вертикальным разрешением, следящая за рельефом поверхности [15, 16];

 вложенные расчетные области с односторонним взаимодействием [17];

— боковые граничные условия «радиационного» типа (для компонент горизонтальной скорости, температуры и влажности) [17, 18], учитывающие пространственные и временные тенденции зависимых переменных, генерируемых моделью большего масштаба (оперативной глобальной моделью ПЛАВ Гидрометцентра РФ [14]);

 прогностическая модель для температуры почвы опирается на уравнение теплопроводности и диагностическое соотношение для влажности поверхностного слоя почвы [16, 17];

 поверхностные потоки тепла, рассчитываемые на основе теории подобия Монина–Обухова [19];

 коротковолновая и длинноволновая радиация, учитывающая эффекты слоя облачности [20, 21];

– микрофизика теплого дождя, предложенная
E. Kessler [22];

 турбулентная структура атмосферного пограничного слоя на основе прогностического уравнения для энергии турбулентности и алгебраических соотношений для масштаба турбулентности и турбулентной диффузии [23];

— параллельная версия мезомасштабной модели, разработанная с использованием стандарта параллельного программирования для систем с распределенной памятью — стандарта передачи сообщений Message Passing Interface.

Были выполнены эксперименты по прогнозированию на 40-часовой временной интервал метеорологических характеристик (температура воздуха T, температура точки росы Td, относительная влажность R и скорость ветра V), необходимых в прогнозе слабого ветра (5–7 июля 2012 г.), а также ограниченной дальности видимости в тумане, дымке и дожде (1–2 августа 2013 г., 5–6 июня 2013 г., 12– 13 мая 2014 г.) и обледенения воздушных судов (10 расчетных периодов в октябре – декабре 2014–2015 гг.) – явлений погоды, опасных для авиации. Предикторами для прогноза являются различные наборы метеорологических характеристик: температура воздуха и относительная влажность – для всех явлений, температура точки росы и скорость ветра – только для условий ухудшения метеорологической дальности видимости и изменения ветрового режима.

Для верификации модели по метеорологическим характеристикам *T*, *Td*, *R*, *V* использованы 767 ее реализаций. Из них на расчеты условий слабого ветра и изменение скорости ветра на ограниченной территории приходится 192, ухудшений метеорологической дальности видимости – 175 и обледенения воздушных судов – 400 реализаций.

Численный прогноз по модели TSUNM3 осуществлялся ежечасно для периода с 09:00 первых суток до 00:00 UTC третьих суток с заблаговременностью от 1 ч. Таким образом, погодные ситуации включали численный прогноз на период до 40 ч для 2500 узлов, в том числе узлов с координатами аэропорта Томска (Богашево), TOR-станции Института оптики атмосферы (ИОА СО РАН), Томской гидрометеорологической станции (ГМС) и центра города. Полученные в ходе экспериментов результаты модели были сопоставлены с данными ГМС, TOR-станции [24] и аэродромной метеорологической измерительной системы, установленной в аэропорту г. Томска (Богашево).

Для выявления успешности модели используются определенные методики оценки прогноза с расчетом общепринятых показателей [25–28]. В работе точность прогноза значений метеорологических величин оценивалась по следующим характеристикам:

 средняя арифметическая (систематическая)
ошибка BIAS — систематическое завышение или занижение прогностической величины относительно фактической:

BIAS =
$$\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i);$$
 (1)

– средняя абсолютная ошибка прогноза МАЕ (mean absolute error), характеризующая среднее значение погрешности без учета ее знака (с точностью до 0,1):

MAE =
$$\frac{1}{N} \sum_{i=1}^{N} |F_i - O_i|;$$
 (2)

 средняя квадратическая ошибка прогноза RMSE (root-mean-square error) – среднее отклонение рассчитанной по модели величины от фактически наблюдавшейся:

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2};$$
 (3)

Старченко А.В., Кужевская И.В., Кижнер Л.И. и др.

 – коэффициент корреляции *г* между прогностическими и фактическими рядами:

$$r = \frac{\sum_{i=1}^{N} (F_i - F_s)(O_i - O_s)}{\sqrt{\sum_{i=1}^{N} (F_i - F_s)^2} \sqrt{\sum_{i=1}^{N} (O_i - O_s)^2}},$$
(4)

где N — число прогнозов; F_i , O_i — прогностическое и фактическое (измеренное, наблюдаемое) значения метеорологической величины соответственно; F_s , O_s — ее средние значения.

Дополнительно рассчитывались показатели качества (в процентах) оправдавшихся прогнозов по градациям ошибок для температуры воздуха ($\leq 1, \leq 2, \leq 3, \leq 4, \leq 5$ °C) и скорости ветра ($\leq 5, \leq 10, \leq 15$ м/с).

Результаты

В таблице приведены результаты расчетов показателей качества моделирования метеорологических характеристик, воспроизводимых при прогнозе таких ситуаций, как штилевые условия, способствующие накоплению загрязняющих веществ, пространственная неоднородность поля ветра, опасная для авиации метеорологическая дальность видимости в тумане, дымке, дожде, наличие/отсутствие обледенения воздушных судов в пограничном слое атмосферы.

Систематическая погрешность BIAS указывает на завышение значений температуры воздуха и температуры точки росы (до 2 °С) и скорости ветра (до 1,5 м/с). Среднее отклонение от фактической температуры или температуры точки росы по оценке RMSE не превышает величину 3,7 °С. Средняя квадратическая ошибка прогноза не превышает величину в 15% для относительной влажности и 5,5 м/с для скорости ветра. Значения МАЕ с увеличением заблаговременности прогноза температуры воздуха и точки росы возрастают в пределах 1 °С и не превышают 3 °С (рис. 1), для относительной влажности – практически не изменяются (не превышая 5-10%). В целом значения всех рассчитанных погрешностей в пределах заданной заблаговременности при прогнозе до 40 ч существенно не различаются. В дальнейшем при оценке числа оправдавшихся прогнозов заблаговременность детально не рассматривалась (таблица).

Результаты оценки числа оправдавшихся прогнозов температуры воздуха и температуры точки росы по заданным градациям ошибок представлены на рис. 2.

Как следует из рис. 2, в 52,5% случаев величина ΔT не превышает 2 °С, в 66,5% 3 °С. Для температуры точки росы качество модельных прогнозов увеличивается до 67 и 81% соответственно.

Прогностические значения скорости ветра систематически завышаются моделью, при этом в 98%

Показатель	Характеристика			
	Температура, °С	Относительная влажность, %	Температура точки росы, °С	Скорость ветра, м/с
BIAS	2,0	0	0,8	1,5
MAE	2,8	12	2,1	1,8
RMSE	3,7	15	3,1	5,5
r	0,95	0,53	0,70	0,59
N	767	767	400	192

Показатели качества прогноза метеорологических величин

Рис. 2. Повторяемость отклонений прогностической и фактической температуры воздуха и температуры точки росы по градациям

Оценка успешности численного прогноза элементов погоды по мезомасштабной модели атмосферы... 59

случаев отклонение прогностической от фактической скорости ветра не превышает 5 м/с.

Модель TSUNM3 применяется в экспериментальном (тестовом) режиме, и проводимая оценка погрешностей модели является текущей на данном этапе ее разработки. Возможно сравнение результатов с подобной ей по пространственному разрешению (шаг сетки 1,1 км) моделью COSMO-Ru1, внедренной на Олимпийских играх в Сочи. Модель COSMO-Ru1 имеет следующие показатели успешности: для температуры воздуха BIAS составила –0,5÷ \div -1,9 °C, RMSE – 2,1 \div -2,9 °C; для температуры точки росы – соответственно –0,8 \div +1,5 и 2,6 \div 4,0 °C [29]. Погрешности модели TSUNM3 для температуры точки росы находятся в пределах значений ошибок модели COSMO-Ru1, для температуры воздуха – несколько превышают их (до 1 °C).

Отметим, что в литературе не указываются конкретные числовые показатели качества прогнозов, которые можно строго отнести к успешным или неуспешным. Модель считается тем качественнее, чем меньше указанные погрешности и больше коэффициент корреляции *r*. Исходя из [26], например, при оценке качества прогнозов температуры воздуха каждый единичный прогноз температуры воздуха по пункту считается оправдавшимся, если разность между прогностическим и фактическим значениями не превышает 3 °C.

Сравнение с оценкой погрешностей глобальных и региональных моделей, в том числе региональной Regi [10], показало их сопоставимость для значений температуры воздуха и температуры точки росы, в том числе и для повторяемости отклонений прогностической и фактической температуры в пределах ≤1÷≤5°С. Таким образом, модель TSUNM3 можно признать достаточно успешной для прогноза по ограниченной территории Томской области.

Заключение

Представленные результаты оценки успешности модельного прогноза температуры, влажности воздуха и скорости ветра при разных погодных условиях указывают на однородное распределение погрешности для рассматриваемых узлов сетки модели.

В пределах рассматриваемого периода краткосрочного модельного прогноза погрешности практически не зависят от его заблаговременности (до 40 ч).

Полученные результаты отражают зависимость погрешностей от погодных ситуаций. В среднем модель показывает завышенные значения температуры воздуха, температуры точки росы и скорости ветра. Наилучшие результаты получены при условиях, способствующих обледенению воздушных судов в осенне-зимний период при температуре от 0 до –10 °C. Качество прогноза в таких ситуациях не уступает существующим региональным и мезомасштабным моделям. Наибольшие погрешности прогнозирования температуры воздуха отмечены в условиях слабого ветра. При погодных условиях, характеризующихся выпадением осадков, появлением тумана, изменением скорости ветра на ограниченной территории, качество модели TSUNM3 сопоставимо с моделями, используемыми в настоящее время в оперативной практике прогнозов погоды.

Для дальнейшего совершенствования модели необходимы модификация некоторых параметризаций физических (например, радиационных) процессов в атмосфере и деятельном слое суши, использование дополнительных данных о предметной области и процедур усвоения этих данных, привлечение механизмов описания химии окружающей среды.

Исследование выполнено при финансовой поддержке РФФИ и Администрации Томской области в рамках научных проектов № 16-41-700178 р_а и 18-45-700010 р_а, а также при поддержке Программы повышения конкурентоспособности ТГУ.

- Du Y., Rotunno R., Zhang Q. WRF analysis of WRFsimulated diurnal boundary layer winds in eastern China using a simple 1D model // J. Atmos. Sci. 2015. V. 72. P. 714–727. DOI: 10.1175/JAS-D-14-0186.1.
- Clark A.J., Coniglio M.C., Coffer B.E., Thompson G., Xue M., Kong F. Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF model simulations // Weather Forecast. 2015. V. 30, N 3. P. 613–638. DOI: 10.1175/WAF-D-14-00078.1.
- Coniglio M.C., Elmore K.L., Kain J.S., Weiss S.J., Xue M., Weisman M.L. Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA hazardous weather tested spring experiment // Weather Forecast. 2010. V. 25. P. 408–427. DOI: 0.1175/ 2009WAF2222258.1.
- 4. Калинин Н.А., Ветров А.Л., Свиязов Е.М., Попова Е.В. Изучение интенсивной конвекции в Пермском крае с помощью модели WRF // Метеорол. и гидрол. 2013. № 9. С. 21–30.
- 5. Шихов А.Н., Быков А.В. Оценка качества прогноза мезомасшабных конвективных систем на Западном Урале с помощью модели WRF и спутниковых данных MODIS // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, № 1. С. 137–148.
- 6. Романский С.О., Вербицкая Е.М. Краткосрочный численный прогноз погоды высокого пространственного разрешения по Владивостоку на базе модели WRF– ARW // Вестн. ДВО РАН. 2014. № 5. С. 48–57.
- National Meteorological Center of CMA [Electronic resource]. URL: http://eng.nmc.cn/publish/area/china/ hws.html (last access: 15.03.2018).
- Baldauf M., Seifert A., Forstner J., Majewski D., Raschendorfer M., Reinhardt T. Operational convectivescale numerical weather prediction with the COSMO model: Description and sensitivities // Mon. Weather Rev. 2011. V. 139. P. 3887–3905.
- 9. Ривин Г.С., Розинкина И.А., Вильфанд Р.М., Алферов Д.Ю., Астахова Е.Д., Блинов Д.В., Бундель А.Ю., Казакова Е.В., Кирсанов А.А., Никитин М.А., Перов В.Л., Суркова Г.В., Ревокатова А.П., Шатунова М.В., Чумаков М.М. Система СОЅМО-Ru негидростатического мезомасштабного краткосрочного прогноза погоды Гидрометцентра России: второй этап реализации и развития // Метеорол. и гидрол. 2015. № 6. С. 58–71.
- 10. Ривин Г.С., Розинкина И.А., Багров А.Н., Блинов Д.В., Кирсанов А.А., Кузьмина Е.В., Шатунова М.В., Чумаков М.М., Алферов Д.Ю., Бундель А.Ю., Зайченко М.Ю., Никитин М.А. Мезомасштабная модель COSMO-Ru2 и результаты ее оперативных испыта-

ний // Информ. сб. № 44. Результаты испытания новых и усовершенствованных технологий, моделей и методов гидрометеорологических прогнозов. Москва; Обнинск: ИГ-СОЦИН, 2017. С. 25–55.

- 11. Starchenko A.V., Bart A.A, Kizhner L.I., Barashkova N.K., Volkova M.A., Zhuravlev G.G., Kuzhevskaya I.V., Terenteva M.V. Analysis of observations and results of numerical modeling of meteorological parameters and atmospheric air pollution under weak wind conditions in the city of Tomsk // Proc. SPIE. 2015. V. 9680. P. 96806Z-1–96806Z-7.
- Volkova M.A., Starchenko A.V., Kuzhevskaya I.V., Bart A.A., Kizhner L.I., Barashkova N.K. Forecast of icing zones using possibilities of hydrodynamic simulation for the atmospheric boundary layer // Proc. SPIE. 2016. V. 10035. P. 1003567-1–1003567-7.
- 13. Горбатенко В.П., Старченко А.В. Мезомасштабное моделирование атмосферных процессов на суперкомпьютере ТГУ СКИФ СҮВЕRІА // Марчуковские научные чтения – 2017: сб. тр. междунар. науч. конф. Новосибирск: Ин-т вычислит. математики и матем. геофизики СО РАН, 2017. С. 224–229.
- Tolstykh M.A. Semi-Lagrangian high-resolution atmospheric model for numerical weather prediction // Russ. Meteorol. Hydrol. 2001. N 4. P. 1–9.
- Starchenko A.V., Bart A.A., Bogoslovskiy N.N., Danilkin E.A., Terenteva M.A. Mathematical modelling of atmospheric processes above an industrial centre // Proc. SPIE. 2014. V. 9292. P. 929249-1–929249-9.
- Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. М.: Наука, 1985. 256 с.
- Kunz R., Moussiopoulos N. Simulation of the wind field in Athens using refined boundary conditions // Atmos. Environ. 1995. V. 29, N 24. P. 3575-3591.
- Carpenter K. Note on the Paper "Radiation Condition for the Lateral Boundaries of Limited-Area Numerical Models" by M. Miller, A. Thorpe (Q. J., 107, 615–628) // J. Roy. Meteorol. Soc. 1982. V. 108. P. 717–719.
- 19. Атмосферная турбулентность и моделирование распространения примесей / под ред. Ф.Т.М. Ньистадта, Х. ван Допа. Л.: Гидрометеоиздат, 1985. 351 с.

- 20. Avissar R., Mahrer Y. Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I. Physical and numerical aspects // J. Appl. Meteorol. 1988. V. 27. P. 400–413.
- 21. Stephens G. Radiation profiles in extended water clouds. Part II: Parameterization schemes // J. Atmos. Sci. 1978. V. 35. P. 2123–2132.
- 22. Kessler E. On the distribution and continuity of water substance in atmospheric circulation. Meteorology monograph // Bull. Am. Meteorol. Soc. 1969. N 32. P. 84–112.
- 23. Старченко А.В. Моделирование переноса примеси в однородном атмосферном пограничном слое // Материалы междунар. конф. ENVIROMIS 2000. Томск: Изд-во Томского ЦНТИ, 2000. С. 77–82.
- 24. Аршинов М.Ю., Белан Б.Д., Давыдов Д.К., Иноуйе Г., Краснов О.А., Мачида Т., Максютов Ш., Недэлэк Ф., Рамонет М., Сиас Ф., Толмачев Г.Н., Фофонов А.В. Организация мониторинга парниковых и окисляющих атмосферу компонент над территорией Сибири и некоторые его результаты. 1. Газовый состав // Оптика атмосф. и океана. 2006. Т. 19, № 11. С. 948–955.
- 25. Проведение производственных (оперативных) испытаний новых и усовершенствованных методов гидрометеорологических и гелиогеофизических прогнозов: РД 52.27.284-91: метод. указания. М., 1991. 150 с.
- 26. Наставление по краткосрочным прогнозам погоды общего назначения: РД 52.27.724-2009. Москва, Обнинск: ИГ-СОЦИН, 2009. 50 с.
- 27. Толстых М.А., Шашкин В.В., Фадеев Р.Ю., Шляева А.В., Мизяк В.Г., Рогутов В.С., Богословский Н.Н., Гойман Г.С., Махнорылова С.В., Юрова А.Ю. Система моделирования атмосферы для бесшовного прогноза. М.: ТРИАДА ЛТД, 2017. 166 с.
- 28. Шакина Н.П., Иванова А.Р. Прогнозирование метеорологических условий для авиации. М., 2016. 255 с.
- 29. Бундель А.Ю., Кирсанов А.А., Муравьев А.В., Ривин Г.С., Розинкина И.А., Блинов Д.В. Первые результаты оценки успешности мезомасштабных численных прогнозов COSMO-Ru, выпускаемых в рамках метеообеспечения Олимпиады Сочи // Тр. Гидромет. России. 2014. Вып. 352. С. 37–54.

A.V. Starchenko, I.V. Kuzhevskaya, L.I. Kizhner, N.K. Barashkova, M.A. Volkova, A.A. Bart. Evalution of the TSUNM3 high-resolution mesoscale NWP model.

The results of the forecast verification of the high-resolution mesoscale model TSUNM3 created at Tomsk State University are presented. The model is intended for forecasting weather elements at the surface and in the atmosphere boundary layer and is used in scientific researches to predict the state of the atmosphere in the Tomsk region up to an altitude of 2.5 km with a lead time of up to 40 hours. It has a higher spatial resolution (1 km) than the model COSMO-Ru14-Sib technology operatively functioning in the Siberian region (grid spacing is 13.2 km). The forecast quality of the temperature-humidity and dynamic characteristics of the atmosphere state by the TSUNM3 model is comparable to the quality of existing operational mesoscale models.