2013. Том 54, № 1

Январь – февраль

C. 136 – 140

УДК 548.3:549.452:546.183:547.361

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ ГАЛОГЕНОКУПРАТОВ(І) АЛЛИЛТРИФЕНИЛФОСФОНИЯ

Г.В. Нощенко¹, Н.Ф. Саливон¹, Б. Зарыхта², В.В. Олийник²

¹Национальный лесотехнический университет Украины, Львов E-mail: NoschenkoG@ukr.net ²Опольский университет, Польша

Статья поступила 6 января 2012 г.

Методами переменно-токового электрохимического синтеза впервые получены галогенокупраты аллильного производного фосфония состава (CH₂=CHCH₂(C₆H₅)₃P)CuX₂ (X = = Br (I), Cl (II)). Соединение I кристаллизуется в пр. гр. *P*2₁, *a* = 9,6341(3), *b* = 12,4167(4), *c* = 9,9618(4) Å, β = 117,484(5)°, *Z* = 2. Соединение II кристаллизуется в пр. гр. *P*2₁/*n*, *a* = = 9,9725(5), *b* = 15,4586(8), *c* = 13,7557(5) Å, β = 90,429(4)°, *Z* = 4. В структурах I и II квазилинейные анионы CuX₂⁻ удерживаются водородными связями С—H···X внутри каркаса, образованного посредством стекинга фенильных групп из катионов CH₂=CHCH₂(C₆P₅)₃P⁺. Аллильные группы не участвуют в координации с атомами меди(I).

Ключевые слова: кристаллическая структура, медь(I), аллилфосфоний, стекинг, слабые водородные связи, фенильный клинч, гомосопряжение, гиперконъюгация.

Галогенокупраты(I) алкилтрифенилфосфония привлекают внимание исследователей как поверхностно-активные вещества [1], ингибиторы коррозии металлов [2], прототипы ионообменных смол [3] и молекулярных замков (molecullar zippers) [4], но особенно как модели биологически активных веществ и инструменты для исследования внутриклеточных процессов [5]. Это обусловлено тем, что липофильные катионы алкилтрифенилфосфония имеют повышенную способность проникать сквозь мембраны митохондрий, а медь, как известно, участвует в окислительно-восстановительных процессах митохондрии. Важным шагом на пути к более глубокому пониманию поверхностной активности и биохимических свойств этих веществ является изучение их надмолекулярного строения. Известно, что кристаллическая структура галогенокупратов алкилтрифенилфосфония определяется л-стекингом фенильных групп и слабыми водородными связями С-Н···Х. Однако, по причине структурной лабильности катионов и тенленции CuX к образованию многоялерных анионов, даже простейшие представители этого типа соединений являются сложными объектами для кристаллической инженерии. В качестве модельных соединений для структурного изучения этого феномена были выбраны галогенокупраты(I) аллилтрифенилфосфония ((RPh₃P)CuX₂). Использование в качестве алкенильного заместителя R аллильной группы предполагало исследовать влияние атома фосфора на находящуюся в β-положении к нему группу С=С.

В этой работе представлен синтез, а также результаты рентгеноструктурного и кристаллохимического анализа комплексных соединений состава $LCuX_2$ (L = CH₂=CHCH₂(C₆P₅)₃P, X = Br (I), Cl (II)).

[©] Нощенко Г.В., Саливон Н.Ф., Зарыхта Б., Олийник В.В., 2013

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Мелкие бесцветные кристаллы соединения I ($\rho = 1,56$ г/см³) образуются с количественным выходом через несколько минут после растворения 0,14 г (1 ммоль) CuBr в этанольном растворе, содержащем 0,5 г (1,3 ммоль) LBr. Более крупные и качественные кристаллы I для рентгеноструктурного исследования получали переменно-токовым электрохимическим синтезом [6] на медных электродах из 5 мл этанольного раствора, содержащего 0,07 г (0,3 ммоль) CuBr₂ и 0,12 г (0,3 ммоль) LBr. Пригодные для PCA кристаллы соединения II получали аналогично из спиртового раствора, содержащего 0,17 г (1 ммоль) CuCl₂·2H₂O и 0,12 г (0,3 ммоль) LBr. Хлорид меди(II) взят в избытке для вытеснения ионов брома из комплекса. Положительный результат, полученный при этом, подтверждает правильность сделанного предположения о смещении вправо установившегося равновесия:

$2[LCuClBr](p) + CuCl_2(p) \leftrightarrow 2[LCuCl_2](\kappa) + CuBr_2(p).$

Соединения I ($t_{nn} = 105$ —106 °C) и II ($t_{nn} = 112$ —113 °C) в воде и спирте заметно не растворимы, однако хорошо растворяются в ацетонитриле. В воде при ~60 °C гидролитически разлагаются с образованием желтого Cu₂O·nH₂O. В сухой атмосфере сохраняются больше месяца без видимых изменений.

Экспериментальные данные для **I** и **II** получены на дифрактометре CCD Xcalibur (графитовый монохроматор, Мо K_{α} -излучение, $\lambda = 0,71073$ Å) при 293(2) K: **I**) C₂₁H₂₀PCuBr₂, M = 526,7 г/моль, моноклинная сингония, пр. гр. $P2_1$, a = 9,6341(3), b = 12,4167(4), c = 9,9618(4) Å, $\beta = 117,484(5)^{\circ}$, V = 1057,18(4) Å³, Z = 2, $\rho_{\text{выч}} = 1,654$ г/см³, $\mu = 4,889$ мм⁻¹, $2\theta_{\text{max}} = 59^{\circ}$, F(000) = 520, всего измерено 8535 отражений, в том числе 5135 независимых, 234 уточняемых параметра, весовая схема [$\sigma(F_0)^2 + 0,0001F_0^2$]⁻¹, R = 0,0217, $R_w = 0,0227$; **II**) C₂₁H₂₀PCuCl₂, M = 426,8 г/моль, моноклинная сингония, пр. гр. $P2_1/n$, a = 9,9725(5), b = 15,4586(8), c = 13,7557(5) Å, $\beta = 90,429(4)^{\circ}$, V = 2120,5(1) Å³, Z = 4, $\rho_{\text{выч}} = 1,337$ г/см³, $\mu = 1,356$ мм⁻¹, $2\theta_{\text{max}} = 59^{\circ}$, F(000) = 896, всего измерено 17002 отражения, в том числе 5469 независимых, 226 уточняемых параметров, весовая схема [$\sigma(F_0)^2 + 0,0001F_0^2$]⁻¹, R = 0,0447, $R_w = 0,0395$. Интенсивно-

сти отражений исправлены на факторы Лоренца и поляризации. Начальная модель структуры получена с помощью charge flipping метода (программы Superflip) [7], дополнена атомами, локализованными из разностных синтезов Фурье, и уточнена с использованием программы Jana2006 [8]. Координаты атомов водорода определены геометрически и уточнены в модели наездника в изотропном приближении ($U_{iso}(H) = 1, 2U_{eq}(C)$). Уточнение параметров всех неводородных атомов проведено методом наименьших квадратов в полноматричном анизотропном приближении. Для I установлена абсолютная структура (параметр Флека 0,031(5) [9]). Координаты атомов и их тепловые параметры можно получить в Кембриджском банке структурных данных — ССDC 824413 для I и ССDC 824259 для II (ССDС, 12 Union Road, Cambridge CB2 1EZ, UK (Fax, +44-(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Неизоструктурность комплексов I и II реализуется по типу пространственная группа — неизоморфная подгруппа (*P2*₁/*n* — *P2*₁), как и в случае комплексов меди(I) с аллильными производными аммония [10]. Это обусловлено структурной лабильностью катионов алкилтрифенилфосфония и их способностью к перераспределению слабых межмолекулярных взаимодействий и, как следствие, к полиморфизму [11].

Кристаллические структуры соединений I и II образованы катионами аллилтрифенилфосфония (L^+) и почти линейными анионами CuX_2^- . Проекции кристаллических структур этих соединений изображены на рис. 1. Поскольку кристаллические структуры данного типа удобно анализировать с учетом расстояний между катионами [12], на рисунке близко расположенные атомы фосфора соединены сплошными стрелками, а более удаленные — штриховыми. Подобный метод уже использовался ранее и оказался весьма эффективным, например, при изучении

Рис. 1. Фрагмент структуры I (цифры указывают расстояния между атомами фосфора катионов L⁺; расстояния Cu—Br равны 2,220(1) и 2,222(1) Å, угол Br—Cu—Br — 177,65(3)°) (*a*). Фрагменты структуры II (расстояния Cu—Cl равны 2,117(1) и 2,122(1) Å, угол Cl—Cu—Cl — 178,41(4)°) (*б*). Для упрощения рисунка аллильная и фенильные группы не показаны

строения супрамолекулярных блоков, образующихся при ассоциации катионов RPh₃P⁺ посредством стекинга фенильных групп [12].

При таком подходе в структуре соединения I, квазиизоморфного к ранее изученному (EtPh₃P)CuBr₂ [13], можно выделить зигзагообразные цепи (L⁺)_n с расстояниями P—P 6,784(1) Å. Соответственно, кратчайшие расстояния P—P между такими 1D образованиями, составляющие 9,634(1) и 9,962(1) Å, показаны штриховыми стрелками. Чтобы в деталях рассмотреть строение фрагмента (L⁺)_n, четыре соседних катиона L⁺ отдельно изображены на рис. 2, *a*. Оказалось, что причиной ассоциации органических катионов вдоль направления [010] является π,π -стекинг их фенильных групп. При этом во взаимодействие вступают по три фенильных группы от каждого катиона L⁺ и каждая фенильная группа взаимодействует с двумя фенильных и m(2), ориентированных лицом к лицу, достигает 3,93 Å (см. рис. 2, *a*), а угол между их плоскостями (τ) составляет 12,6°. Такая геометрия весьма близка к полученной из квантово-химических расчетов для находящихся в стэкинге молекул бензола (3,9 Å) [14]. Плоскости еще двух фенильных групп с центрами m(2) и m(3) развернуты относительно друг друга, образуя

в стэкинге *T*-геометрию с расстоянием между центроидами 4,70 Å ($\tau = 53,5^{\circ}$), что также согласуется с квантово-химически рассчитанной геометрией молекул бензола, находящихся в *T*-стэкинге (5,2 Å) [14]. Замечены также более слабые вза-

Рис. 2. Фрагмент цепочки (L⁺)_{*n*} в структуре I с расстоянием между атомами фосфора 6,784(1) Å. Выбранные расстояния: P—P 6,784(1) Å, m(1)—m(2) 3,93, m(2)—m(3) 4,70, m(1)—m(3) 4,89, m(2)—m(2) 7,68 Å (*a*). Димер (L⁺)₂ в структуре II. Выбранные расстояния: P—P 7,010(1), m(1)—m(2) 5,04 Å (б). Для упрощения рисунка атомы водорода не показаны

имодействия m(1)—m(3), реализующиеся с расстоянием между центроидами 4,89 Å ($\tau = 74,0^{\circ}$). Следует отметить, что такого рода взаимодействие между двумя катионами RPh₃P⁺, в которое вовлечены четыре фенильные группы, получило специальное название "четырехкратный фенильный клинч" (*fourfold phenyl embrace*) [12]. В свою очередь, объединение вышеописанных цепей (L⁺)_n в трехмерную структуру осуществляется также за счет π -стекинга фенильных групп, но более слабого и не охватывающего всех фенильных групп. Так, в направлениях [100] и [001] взаимодействуют edge-to-face только по одной фенильной группе от каждого катиона L⁺, а расстояния между центроидами и межплоскостные углы составляют 5,82 Å ($\tau = 65,0^{\circ}$) и 5,75 Å ($\tau = 75,2^{\circ}$) соответственно.

Квазилинейные анионы CuBr₂⁻ удерживаются системой водородных связей C—H…Br [15], причем наиболее прочные из них образуются за счет двух атомов водорода метиленовой группы (расстояния Br…C 3,714(3) и 3,983(3) Å, Br…H 2,85 и 2,86 Å, валентные углы C—H…Br 147 и 173°). Длина аналогичных контактов с участием атомов водорода фенильных групп превышает Br…H 3,16 Å.

В отличие от структуры I, в структуре II катионы объединяются не в цепи $(L^+)_n$, а в димеры $(L^+)_2$ (см. рис. 1, δ). Хотя эта перестройка структуры происходит вследствие замены атомов Br на атомы Cl, однако ее возможность и направление определяются склонностью катионов аллилтрифенилфосфония к перераспределению слабых межмолекулярных взаимодействий вследствие вращения фенильных групп вокруг оси связей Р—С.

В структурах соединений, содержащих катионы RPh_3P^+ , приблизительно в 20 % случаев наблюдаются димеры (RPh_3P^+)₂, образующиеся за счет стекинга шести фенильных групп [16]. Однако в структуре **II** катионы объединены в димеры (L^+)₂ за счет стекинга только четырех фенильных групп (по две от каждого катиона L^+), реализуя, как и в структуре **I**, *"fourfold phenyl embrace"* (расстояние P—P 7,010(1) Å, см. рис. 2, δ). В таком центросимметричном димере пары взаимодействующих фенильных групп m(1) и m(2), ориентированных ребром к лицу, сближены до расстояния между центроидами 5,04 Å ($\tau = 78^\circ$).

В дальнейшем димеры $(L^+)_2$ ассоциируются в направлениях [001] и [011] за счет слабого π -стекинга фенильных групп, образуя вдоль [010] ленты {(L^+)₂}_{*n*} (см. рис. 1, δ). В направлениях, показанных штриховыми стрелками (расстояния Р—Р 8,571(2) и 8,562(1) Å), взаимодействуют по одной фенильной группе от каждого катиона L^+ на расстояниях 4,31 ($\tau = 0^\circ$) и 4,92 Å $(\tau = 43^{\circ})$. Сближение соседних лент $\{(L^+)_2\}_n$ на расстояние 8,501(1) Å обеспечивается исключительно ионными связями мостиковых квазилинейных анионов CuCl₂ без вовлечения фенильных групп в стекинг-взаимодействие. Слабые водородные связи С-H···Cl дополнительно стабилизируют структуру (расстояния Cl···C 3,836(3) и 3,851(4) Å, Cl···H 2,91 и 2,94 Å, валентные углы С—Н···Сl 163 и 159°). Интересно, что даже наиболее короткие контакты С—Н···Сl реализуются на расстояниях, почти равных сумме ван-дер-ваальсовых радиусов атомов Н и С1 (2,84 Å) [17, 18]. В противоположность этому в структуре I контакт С—H···Br (2,81 Å) меньше суммы ван-дер-ваальсовых радиусов атомов Н и Вr (2,94 Å) [17, 18]. В II слабые связи С- $H \cdots Cl$ задействованы в объединение димеров $(L^+)_2$ в ленты, не связывая катионы L^+ внутри димера. В I, в противоположность этому, слабые связи С-H···Br дополнительно объединяют соседние катионы L⁺ внутри цепочки (L⁺)_n, почти не связывая цепочки (L⁺)_n между собой. Вследствие этого расстояния Р-Р между цепочками в I больше расстояний Р-Р между димерами в II (см. рис. 1).

Особого внимания заслуживает тот факт, что в полученных соединениях C=C-группа, склонная к π-взаимодействию с атомом Cu(I), осталась некоординированной. Это связано с тем, что аллильная группа производных фосфония имеет пониженную способность взаимодействовать с электрофильными реагентами вследствие β-эффекта позитивно заряженного атома фосфора [19]. В случае соединений I и II аллильные группы под влиянием атомов фосфора приобретают конформации с торсионными углами Р—С—С=С 130 и 133° соответственно. Для сравнения, в алифатических производных фосфония аналогичные торсионные углы Р—С—С—С в катионах пропил-, бутил- и пентилтрифенилфосфония составляют 150 [20], 169 [21] и 173° [22]. То есть аллильная группа расположена так, чтобы *p*-орбиталь β-атома углерода, участвующая в образовании π -связи C=C, была направлена в сторону атома фосфора для наиболее эффективного (*p*—*d*)_σ-гомосопряжения [23, 24] или же $\pi \rightarrow \sigma$ -гиперконъюгации [25]. Таким образом, аллильная группа, задействованная во внутримолекулярное комплексообразование, не способна в полной мере к π -связыванию с атомами Cu(I). В связи с этим возникает вопрос о возможности реализации π -взаимодействия Cu—(C=C) с производными фосфония, содержащими несколько аллильных групп у одного атома фосфора. Возможно, в этом случае электроноакцепторного характера атома фосфора будет недостаточно для изменения реакционной способности всех групп С=C, что позволит реализоваться π -комплексу меди(I).

СПИСОК ЛИТЕРАТУРЫ

- 1. Hafiz A.A. // J. Iran. Chem. Soc. 2008. 5, N 1. P. 106.
- 2. Bhrara K., Singh G. // Corrosion Engineering, Science and Technology. 2007. 42, N 2. P. 137.
- 3. Stokes K.K., Orlicki J.A., Beyer F.L. // Polym. Chem. 2011. 2, N 1. P. 80.
- 4. Shu L., Mu Z., Fuchsh H. et al. // Chem. Commun. 2006. N 17. P. 1862.
- 5. Росс М.Ф., Келсо Д.Ф., Блейки Ф.Х. и др. // Биохимия. 2005. 70, № 2. С. 273.
- Патент № 25450 А Україна, МКІ СЗОВ 7/12, СЗОВ 7/14. Спосіб одержання кристалічних модифікацій купрогалогенідних π-комплексів з алільними похідними / Б.М. Михалічко, М.Г. Миськів (Україна). № 95083610; Заявл. 1.08.95; Опубл. 30.10.98.
- 7. Palatinus L., Chapuis G. // J. Appl. Crystallogr. 2007. 40, N 4. P. 786.
- 8. *Petrichek V., Dusek M., Palatinus L.* JANA2006. The crystallographic computing system. Czech Republic, Institute of Praha, 2006.
- 9. Flack H.D. // Acta Crystallogr. 1983. A39, N 6. P. 876.
- 10. Олийник В.В., Гловяк Т., Мыськив М.Г. // Координац. химия. 1999. 25, № 10. С. 790.
- 11. Chow H., Dean P.A.W., Craig D.C. // New J. Chem. 2003. 27, N 4. P. 704.
- 12. Scudder M., Dance I. // Dalton Trans. 1998. N 19. P. 3155.
- 13. Andersson S., Jagner S. // Acta Chem. Scand. A. 1985. 39. P. 515.
- 14. Sinnokrot M.O., Sherrill C.D. // J. Phys. Chem. A. 2006. 110, N 37. P. 10656.
- 15. Aakeröy C.B., Evans T.A., Seddon K.R. et al. // New. J. Chem. 1999. 22, N 2. P. 145.
- 16. Steiner T. // New J. Chem. 2000. 24, N 3. P. 137.
- 17. Bondi A. // J. Phys. Chem. 1964. 68, N 3. P. 441.
- 18. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. 100, N 18. P. 7384.
- 19. Овакимян М.Ж., Погосян А.С., Мовсисян М.Л. и др. // Журн. общ. химии. 2010. 80, № 11. С. 1779.
- 20. Cherwinski E.W. // Acta. Crystallogr. 2004. E60, N 8. P. o1442.
- 21. Cherwinski E.W. // Acta. Crystallogr. 2005. E61, N 7. P. 02272.
- 22. Cherwinski E.W. // Acta. Crystallogr. 2004. E60, N 12. P.o2393.
- 23. Осадчев А.Ю., Пушкарев А.Р., Никитина Ю.Ю. и др. // Журн. общ. химии. 2000. 70, № 9. С. 1470.
- 24. Шаманин В.В., Осадчев А.Ю., Скороходов С.С. // Докл. РАН. Химия. 2001. 380, вып. 1. С. 247.
- 25. Lambert J.B., Shawl C.E., Basso E. // Canad. J. Chem. 2000. 78. P. 1441.