УДК 535.21

ТЕРМОКАПИЛЛЯРНАЯ ДЕФОРМАЦИЯ ТОНКОГО СЛОЯ ЖИДКОСТИ, ВЫЗВАННАЯ ПУЧКОМ ЛАЗЕРА

Б. А. Безуглый, Н. А. Иванова, А. Ю. Зуева

Тюменский государственный университет, 625003 Тюмень

Получено уравнение, описывающее профиль термокапиллярной деформации тонкого слоя поглощающей жидкости, вызванной тепловым действием лазерного излучения. Численные оценки профиля деформации согласуются с экспериментальными данными. Показано, что при увеличении мощности излучения глубина деформации тонкого слоя жидкости увеличивается, в результате чего происходит его разрыв.

Введение. Изучение термокапиллярной деформации свободной поверхности тонкого слоя жидкости начато в работах Бенара [1], в которых впервые замечена деформация поверхности слоя с установившейся гексагональной картиной конвекции и предприняты попытки измерить величину прогиба в центре ячеек. По оценкам Бенара, в ячейках диаметром D = 3 мм при перепаде температуры между центром и стенками ячейки 1 К углубление достигает 1,7 мкм.

В 1939 г. Хершей наблюдал образование термокапиллярного холмика в тонком слое воды на стеклянной пластинке, к которой снизу прикасались стеклянной палочкой, охлажденной в жидком азоте. При ряде упрощающих предположений он решил уравнение Навье — Стокса и получил приближенную оценку высоты холмика $\Delta h = 3\Delta\sigma/(\rho gh)$ [2].

Практическая потребность в оценке глубины термокапиллярной деформации возникла в лакокрасочной промышленности в связи с разработкой рецептов ряда декоративных покрытий [3]. Открытие одним из авторов данной работы фотоиндуцированной капиллярной конвекции [4–6], а также разработка нескольких жидкослойных систем регистрации информации [7, 8] и способов определения физических свойств тонких слоев жидкости [9] усилили интерес к данной проблеме [5, 10–14].

В настоящей работе получены оценки стационарного профиля термокапиллярной деформации, индуцированной пучком лазера, которые сопоставляются с неопубликованными ранее результатами эксперимента [5].

Математическая модель. На слой поглощающей жидкости толщиной h_0 с характерным горизонтальным размером L ($L/h_0 > 100$) падает гауссов пучок лазера мощностью P и диаметром 2w. Вертикальная координата z поверхности термокапиллярного углубления отсчитывается от подложки: z = 0 (рис. 1).

Рис. 1. Геометрия задачи

Стационарные течения, в которых силы инерции всюду малы по сравнению с силами капиллярного давления и вязкого трения (т. е. число Рейнольдса Re \ll 1), описываются уравнением Навье — Стокса $\nabla p = \mu \Delta V$, которое в силу осевой симметрии задачи удобно записать в цилиндрической системе координат (r, φ, z) , положив $\partial/\partial \varphi = 0$ и $V_{\varphi} = 0$. Тогда

$$\frac{1}{\rho}\frac{\partial p}{\partial r} = \nu \left(\frac{\partial^2 V_r}{\partial r^2} + \frac{1}{r}\frac{\partial V_r}{\partial r} + \frac{\partial^2 V_r}{\partial z^2}\right);\tag{1}$$

$$\frac{1}{\rho}\frac{\partial p}{\partial z} = \nu \left(\frac{\partial^2 V_z}{\partial r^2} + \frac{1}{r}\frac{\partial V_z}{\partial r} + \frac{\partial^2 V_z}{\partial z^2}\right).$$
(2)

Из анализа экспериментально полученного профиля поверхности при установившейся термокапиллярной конвекции следует, что от центра углубления до периферии средний уклон свободной поверхности приблизительно равен 0,6. Следовательно, $V_z/V_r < 1$, и в грубом приближении уравнение (2) из анализа можно исключить. Поскольку $\partial V_r/\partial r \approx$ V_r/L , а $\partial V_r/\partial z \approx V_r/h_0$, радиальная компонента скорости в направлении оси z изменяется быстрее, чем в направлении r. Таким образом, $\partial V_r/\partial r \ll \partial V_r/\partial z$. В результате имеем уравнение

$$\frac{\partial p}{\partial r} = \mu \frac{\partial^2 V_r}{\partial z^2}.$$
(3)

Для слоя жидкости на твердой поверхности существует граничное условие

$$V_r|_{z=0} = 0. (4)$$

На свободной поверхности выполняется условие равенства вязкого напряжения и поверхностной силы

$$\mu \left. \frac{\partial V_r}{\partial z} \right|_{z=h} = \frac{\partial \sigma}{\partial r},\tag{5}$$

где $\partial \sigma / \partial r = \sigma'_T \nabla T$; σ'_T — температурный коэффициент поверхностного натяжения жидкости, значение которого для большинства органических веществ лежит в интервале $0.08 \div 0.15 \text{ MH}/(\text{M} \cdot \text{K})$, а градиент температуры ∇T неизвестен.

Чтобы проинтегрировать уравнение (3), получим выражение для давления в жидкости. Учитывая, что капиллярная постоянная $a = \sqrt{2\sigma/(g\rho)}$ сравнима с размерами светового пятна, гидростатическим давлением можно пренебречь. Тогда

$$p = -\sigma \left(\frac{1}{r}\frac{\partial h}{\partial r} + \frac{\partial^2 h}{\partial r^2}\right). \tag{6}$$

Интегрируя (3) совместно с (4) и (5), получим

$$V_r = \frac{\partial p}{\partial r} \frac{z^2}{\mu} + \frac{\partial \sigma}{\partial r} \frac{z}{\mu} - \frac{\partial p}{\partial r} \frac{zh}{\mu}.$$
(7)

Подставляя (7) в уравнение неразрывности $\int_{0}^{n} \int_{0}^{2\pi} rV_r \, d\varphi \, dz = 0$, получим

$$\frac{\partial p}{\partial r} = \frac{3}{2h} \frac{\partial \sigma}{\partial r}.$$
(8)

Из (6) и (8) имеем

$$\sigma \frac{d^3h}{dr^3} + \frac{\partial\sigma}{\partial r} \left(\frac{3}{2h} + \frac{d^2h}{dr^2} + \frac{1}{r}\frac{dh}{dr}\right) + \frac{\sigma}{r}\frac{d^2h}{dr^2} - \frac{\sigma}{r^2}\frac{dh}{dr} = 0.$$
(9)

Уравнение (9) описывает профиль свободной поверхности и решается численно.

Рис. 2. Оптическая схема фотоабсорбционного метода определения профиля деформации:

1 — фотовспышка, 2 — коллектор, 3 — матовое стекло, 4 — слой жидкости, 5 — пучок лазера, 6 — резонансное зеркало, 7 — светофильтр, 8 — фотообъектив

Для определения ∇T , вообще говоря, необходимо решение тепловой задачи, но для простоты ограничимся предположением, что поле температур имеет гауссово распределение [13, 14]

$$T = T_0 + T_c \exp(-r^2/w^2), \tag{10}$$

где T_0 — температура окружающей среды; $T_c = P/(4\pi kh_0)$ — характеристическая температура; k — теплопроводность жидкости.

При $r \to \infty$ уравнение (10) сводится к выражению $T = T_0$, что дает реальную картину поля температур.

Оценка ∇T для слоя этилового спирта ($k = 0,17 \text{ Br}/(\text{м}\cdot\text{K})$) толщиной $h_0 = 1,4 \cdot 10^{-3} \text{ м}$, облучаемого лазером мощностью $P \approx 8 \text{ мBr}$ (радиус пучка $w = 1,5 \cdot 10^{-3} \text{ м}$), составляет 0,04 К/мм, что при радиусе конвективного вихря 4 мм дает перепад температуры $\Delta T \approx 0,2 \text{ K}$.

Уравнение (9) решалось методом Рунге — Кутты четвертого порядка с использованием программного пакета Maple V R4 [15].

Описание эксперимента. Для определения профиля углубления, вызванного термокапиллярной конвекцией при локальном нагревании жидкого слоя пучком лазера, использовался фотоабсорбционный метод [5] (рис. 2), основанный на изменении плотности почернения фотонегатива слоя. Важным элементом схемы является резонансное зеркало 6, которое под углом $\pi/4$ полностью отражает пучок лазера 5 ($P \approx 8$ мВт, $\lambda = 633$ нм) на слой жидкости 4. В месте образования углубления слой тоньше, его оптическая плотность также меньше. На фотографии этого участка слоя профиль углубления связан с профилем плотностей почернения негатива. Для нахождения зависимости между плотностью почернения и толщиной использовался оптический клин, образованный той же поглощающей жидкостью. Клин и углубление, возле которого он помещен, фотографировали на один кадр. Для обеспечения однородности освещения использовалось матовое стекло 3, которое освещалось параллельным пучком от фотовспышки 1, помещенной в фокус коллектора 2. Применение селективного красителя с пиком поглощения на длине волны $\lambda = 633$ нм в такой схеме не позволяет получить достоверные результаты. Это связано с особенностью резонансного зеркала: при полном отражении на длине волны $\lambda = 633$ нм оно почти полностью пропускает излучение дополнительного цвета, что приводит к исчезновению контраста. Этот недостаток можно устранить, используя красители с двумя разнесенными максимумами (например, кристаллический фиолетовый) либо смесь двух красителей с острыми максимумами поглощения. Проверены оба варианта. В последнем случае использовался 3%-й раствор смеси (1:1) бриллиантового зеленого и родамина G в 96%-м

Рис. 3. Расчетный (сплошная кривая) и экспериментальный (точки) профили термокапиллярного углубления

Рис. 4. Зависимость профиля термокапиллярного углубления от мощности лазерного пучка: 1 — P = 1 мВт; 2 — P = 4 мВт; 3 — P = 6 мВт; 4 — P = 8 мВт; 5 — P = 9 мВт

этаноле. Для повышения контрастности перед фотообъективом 8 помещали зеленый светофильтр 7. Профиль плотностей негатива измеряли на микроденситометре ИФО-451.

Результаты и обсуждение. На рис. 3 представлены расчетный (сплошная кривая) и экспериментальный (точки) профили термокапиллярного углубления, образованного в слое этилового спирта толщиной $h_0 = 1,4$ мм лазерным пучком мощностью 8 мВт. Несмотря на ряд грубых упрощающих предположений, рассчитанный профиль удовлетворительно согласуется с экспериментальным, что свидетельствует о соответствии теоретической модели реальному физическому явлению.

На рис. 4 показаны расчетные профили термокапиллярного углубления в зависимости от мощности лазерного излучения. При увеличении мощности пучка от 1 до 8 мВт глубина прогиба в центре углубления увеличилась почти в 8 раз. Дальнейшее увеличение мощности пучка (более 10 мВт) приводит, вероятно, к разрыву жидкого слоя, который наблюдался в слоях окрашенного бензилового спирта толщиной порядка 200 мкм.

Заключение. Получено выражение, определяющее профиль стационарного термокапиллярного углубления для Re « 1, вызванного действием лазерного излучения. Численные оценки профиля углубления, образованного лазерным пучком в слое 3%-го раствора смеси (1:1) бриллиантового зеленого и родамина G в 96%-м этаноле, удовлетворительно согласуются с экспериментальными данными. Исследована также зависимость профиля углубления от мощности лазерного пучка.

ЛИТЕРАТУРА

- 1. Benard H. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent // Ann. Chim. Phys. 1901. Ser. 7. V. 23. P. 62–144.
- Hershey A. V. Ridges in a liquid surface due to the temperature dependence of surface tension // Phys. Rev. 1939. V. 56. P. 204.
- 3. **Яковлев А. Д.** Химия и технология лакокрасочных покрытий. Л.: Химия. Ленингр. отд-ние, 1981.

- Безуглый Б. А., Галашин Е. А., Дудкин Г. Я. О фотоконденсации йода // Письма в ЖЭТФ. 1975. Т. 22, № 2. Р. 76–79.
- 5. Безуглый Б. А. Капиллярная конвекция, управляемая тепловым действием света, и ее применение в способах регистрации информации: Дис. ... канд. физ.-мат. наук. М., 1983.
- Bezuglyi B. A. Photoinduced solutocapillary convection: New capillary phenomenon // Proc. of the 1st Intern. symp. on hydromech. heat/mass transfer microgravity, Perm — Moscow, 6–14 July 1991. Amsterdam: Gordon and Breach Sci. Publ., 1992. P. 335–340.
- 7. Безуглый Б. А., Галашин Е. А. Термотензография новый способ получения изображений // Журн. науч. и прикл. фото- и кинематографии. 1982. Т. 27, № 1. С. 69–71.
- Loulergue J. C., Xu Sen Lu. IR photography in liquid films by thermocapillary convection // Intern. J. Infrared Millimiter Waves. 1986. V. 7, N 1. P. 171–182.
- A. с. 1188588 СССР. Способ определения вязкости / Б. А. Безуглый, С. Н. Ланин, В. В. Низовцев. № 3745533; Заявл. 28.05.84; Опубл. 30.10.85, Бюл. № 40.
- 10. Славчев С. Фотоабсорбционная ТК-конвекция в тонком слое вязкой жидкости. 1. Световое поле // Теорет. и прил. механика. 1982. Т. 18, № 3. С. 55–63.
- Ппеничников А. Ф., Токменина Г. А. Деформация свободной поверхности жидкости термокапиллярным движением // Изв. АН СССР. Механика жидкости и газа. 1983. № 3. С. 150–153.
- 12. Индейкина А. Е., Рязанцев Ю. С., Шевцова В. М. Нестационарная термокапиллярная конвекция в слое неравномерно нагретой жидкости // Изв. АН СССР. Механика жидкости и газа. 1991. № 3. С. 17–25.
- Pimputkar S. M., Ostrach S. Transient thermocapillary flow in thin liquid layers // Phys. Fluids. 1980. V. 23. P. 1281–1285.
- Helmers H., Witte W. Holographic study of laser-induced liquid surface deformations // Opt. Comm. 1984. V. 49. P. 21–23.
- 15. Дьяконов В. П. Математическая система Maple V R3/R4/R5. М.: Солон, 1998.

Поступила в редакцию 22/V 2000 г., в окончательном варианте — 19/X 2000 г.