2015. Том 56, № 4

Июль

C. 831 - 835

КРАТКИЕ СООБЩЕНИЯ

UDC 548.73:547.13:546.48

CRYSTAL STRUCTURE AND LUMINESCENT PROPERTIES OF A ONE-DIMENSIONAL Cd(II) COORDINATION POLYMER CONSTRUCTED BY 4,4'-DI-*TERT*-BUTYL-2,2'-BIPYRIDINE AND 5-*TERT*-BUTYL ISOPHTHALIC ACID

X.J. Xu, J. Wang

Department of Chemistry, Yancheng Teachers University, Yancheng, Jiangsu, P.R. China E-mail: wjyctu@gmail.com

Received November, 25, 2013

A one-dimensional Cd(II) complex $[Cd(Bu_2bpy)(tbip) \cdot H_2O]_n$ (1) $(Bu_2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, H_2tbip = 5-tert-butyl isophthalic acid) is synthesized and characterized using single crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The single crystal X-ray diffraction analysis reveals that complex 1 is a one-dimensional double chain polymer based on <math>\{Cd_2(OCO)_2\}$ dimeric kernels with a Cd···Cd separation of 4.3197(7) Å. The thermal stability and luminescent properties of the title complex are briefly investigated.

DOI: 10.15372/JSC201504027

K e y w o r d s: Cd(II) complex, 4,4'-di-*tert*-butyl-2,2'-bipyridine, 5-*tert*-butyl isophthalic acid, crystal structure, luminescence.

Considerable efforts have been focused on the rational design and synthesis of coordination polymers not only because of their intriguing structural diversity and new topologies but also due to their potential applications in gas storage, chemical separations, microelectronics, nonlinear optics, heterogeneous catalysis, and so on [1-8]. It is well-known that the structure of the coordination polymer is usually influenced by several factors in the self-assembly process, such as organic ligands, solvents, metal atoms, temperature, and so on [9-14]. Among these factors, the choice of organic ligands plays a key role in directing the ultimate architectures of the complexes. In recent years, multicarboxylate ligands have been widely used in the construction of coordination polymers because of their diversity in coordination modes and conformations [15-17].

5-*tert*-Butyl isophthalic acid (H₂tbip) as a substituted isophthalate ligands at *meta*-disposed position 5 is chosen to construct novel coordination polymers mainly because of the steric hindrance and electron-donating properties of the bulky *tert*-butyl group which can affect the coordination abilities and modes of the carboxylic groups [18–22]. However, to the best of our knowledge, coordination polymers constructed from 5-*tert*-butyl isophthalic acid (H₂tbip) and 4,4'-di-*tert*-butyl-2,2'-bipyridine (Bu₂bpy) ligands have not been documented so far. In the present study, we have selected H₂tbip and Bu₂bpy as the organic ligands generating the title new Cd(II) coordination polymer [Cd(Bu₂bpy)(tbip)·H₂O]_n (1), the crystal structure of which we now report. In addition, the thermal and luminescent properties of complex 1 have been investigated.

Experimental. All reagents and solvents were commercially available and used without further purification. The infrared spectrum was obtained in the range $4000-400 \text{ cm}^{-1}$ as KBr disks on a VECTOR 22 spectrometer. The elemental analysis was performed on a Perkin Elmer 240C elemental analyzer. The thermal gravimetric analysis (TGA) was performed on a Perkin-Elmer Pyris 1 TGA analyzer from room temperature to 950 °C with a heating rate of 20 °C ·min⁻¹ under nitrogen. Solid-state fluorescence spectra were recorded on a Fluoro Max-P spectrophotometer at room temperature.

[©] Xu X.J., Wang J., 2015

КРАТКИЕ СООБЩЕНИЯ

Table 1

Parameter				
Empirical formula	C ₃₀ H ₃₈ CdN ₂ O ₅			
Formula weight	619.03			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
$a, b, c, \text{\AA}; \beta, \text{deg.}$	14.125(3), 10.210(2), 20.477(4); 99.311(4)			
V, Å ³	2914.2(10)			
Ζ	4			
$\rho_{calcd}, g/cm^3$	1.411			
$\mu(MoK_{\alpha}), mm^{-1}$	0.789			
Crystal size, mm	0.21×0.19×0.17			
θrange, deg.	2.02-26.75			
F(000)	1280			
$R_1^{a} / w R_2^{b} [I > 2\sigma(I)]$	0.0414 / 0.0725			
GOOF	0.912			

Crystal data and structure refinement for complex 1

Synthesis of $[Cd(Bu_2bpy)(tbip) \cdot H_2O]_n$. A mixture of $Cd(NO_3)_2 \cdot 6H_2O$ (0.0346 g, 0.1 mmol), H_2tbip (0.0222 g, 0.1 mmol), Bu_2bpy (0.0268 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) in H_2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 160 °C for 72 h. After cooling to room temperature, white block crystals were collected by filtration and washed with water and ethanol several times. (yield 31.8 %, based on H_2tbip). Elemental analysis for $C_{30}H_{38}CdN_2O_5$ (Mw = 619.03): C 58.21, H 6.19, N 4.53; found: C 58.39, H 6.21, N 4.54 %. Selected IR peaks (cm⁻¹): 3441 (m), 1633 (s), 1451 (s), 1215 (s), 838 (w), 756 (w), 719 (w).

X-ray crystallography. The crystal structure of complex 1 was determined on a Siemens (Bruker) SMART CCD diffractometer using monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at 296 K. Absorption correction was performed using the SADABS program [23]. The structure was solved by a direct method using the SHELXL-97 program and refined by the full-matrix least-squares technique on F^2 using SHELXL-97 [24]. The disordered atoms (C12, C12B, C13, C13B, C14, C14B, C16, C16B, C17, C17B, C18, and C18B) were refined using C atoms split over two equally occupied sites with a total occupancy of 1. All non-hydrogen atoms were located in difference Fourier maps and refined anisotropically. All H atoms were refined isotropically, with the isotropic vibrational parameters related to the non-H atom to which they are bonded. The crystallographic data are summarized in Table 1. The selected bond lengths and angles are listed in Table 2.

Table 2

Cd(1)—N(1)	2.343(3)	N(1)—Cd(1)—N(2)	68.59(9)	N(1)—Cd(1)—O(1)	149.42(9)
Cd(1)—O(1)	2.387(2)	N(1)—Cd(1)—O(2)	100.83(9)	N(2)—Cd(1)—O(1)	88.07(9)
Cd(1)—O(3)#2	2.277(2)	N(2)—Cd(1)—O(2)	82.54(9)	O(2)—Cd(1)—O(1)	55.08(8)
Cd(1)—N(2)	2.361(3)	O(3)#2—Cd(1)—N(1)	102.81(9)	O(3)#2-Cd(1)-N(2)	169.54(9)
Cd(1)—O(2)	2.358(2)	O(3)#2—Cd(1)—O(1)	97.74(8)	O(3)#2-Cd(1)-O(2)	93.63(8)
Cd(1)—O(4)#1	2.222(2)	O(4)#1—Cd(1)—N(1)	110.72(9)	O(4)#1—Cd(1)—N(2)	91.62(9)
		O(4)#1—Cd(1)—O(1)	88.60(9)	O(4)#1—Cd(1)—O(2)	143.24(9)
		O(4)#1—Cd(1)—O(3)#2	97.19(8)		

Selected bond distances (Å) and angles (deg.) for complex 1

#1 x, y-1, z; #2 -x+1, -y+1, -z+1.

Fig. 1. Coordination environment of the Cd(II) ion in complex 1 showing 30 % ellipsoid probablity. Symmetry codes: ${}^{i}x, y-1, z; {}^{ii}-x+1, -y+1, -z+1$

Results and discussion. Single crystal X-ray diffraction revealed that complex 1 crystallized in the monoclinic space group $P2_1/n$ with an asymmetric unit consisting of a cadmium atom, one bridging tbip^{2–} dianion, one Bu₂bpy chelating ligand, and one water molecule of crystallization. As shown in Fig. 1, the Cd1 cadmium atom possesses a distorted {CdN₂O₄} octahedron bound by a chelating carboxylate group from a tbip^{2–} ligand, single oxygen atom donors from two other different tbip^{2–} ligands, and two nitrogen atoms from one chelating Bu₂bpy ligand. The Cd—N bond lengths (2.343(3)—2.361(3) Å) and Cd—O bond lengths (2.222(2)—2.387(2) Å) are comparable with the corresponding values found in other Cd(II) complexes [25, 26]. The key bond lengths and bond angles are listed in Table 2.

As for the tbip^{2–} anion, the carboxylate groups are all bonded to Cd, with a bridging pair of Cd atoms at one terminus and acting as monondentate donors at another one. Thus, the tbip^{2–} anion serves as an exotridentate ligand with a μ_3 - κ^3 O,O':O'':O''' binding mode, connecting three Cd1 atoms. Pairs of Cd1 atoms are linked by two *anti-syn* carboxylate bridges to construct {Cd₂(OCO)₂} dimeric kernels which have a Cd···Cd contact separation of 4.3197(7) Å. The latter are connected into 1D [Cd(tbip)]_n ribbons oriented parallel to the crystallographic *b* axis. The chelating Bu₂bpy ligands are extended on both sides of the chain (Fig. 2). Approximately 4.0 % of the crystal volume is occupied

Fig. 2. The one-dimensional chain structure of complex 1 along the crystallographic *b* axis, all hydrogen atoms are omitted for clarity

by solvent molecules with a volume of ~115.1 \AA^3 in each cell unit (2914.3 \AA^3), according to the PLATON calculation [27].

The thermal stability of complex 1 was investigated. As shown in Fig. 3, the water molecules of crystallization were ejected from 100 °C to 108 °C (3.2 % weight loss observed, 2.9 % calcd). The removal of the organic ligands occurs in the temperature range of 210 °C to 900 °C. The final residue was proved to be CdO. The calculated result (20.9 %) is basically comparable with the observed one (20.7 %).

The fluorescent property of complex 1 was studied in the solid state at room temperature. The free H₂tbip ligand shows emission peaks at 320 nm [18]. Irradiation of crystalline samples of complex 1 with ultraviolet light ($\lambda_{ex} = 295$ nm) in the solid state resulted in intense emission with a λ_{max} of 343 nm (Fig. 4). According to a recent review of the d^{10} metal coordination polymer luminescence, the emissive behavior of 1 can be ascribed to ligand-centered electronic transitions [28–31].

In summary, we have presented the synthesis and crystal structure of a new 1D Cd(II) complex $[Cd(Bu_2bpy)(tbip) \cdot H_2O]_n$ (1). The single crystal X-ray diffraction analysis reveals that complex 1 is a one-dimensional double chain polymer based on $\{Cd_2(OCO)_2\}$ dimeric kernels with a Cd…Cd separation of 4.3197(7) Å. Moreover, the thermal stability and luminescent properties of the title complex have been briefly investigated.

Crystallographic data for the structural analysis of complex 1 has been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 912615. Copy of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EQ, UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk).

REFERENCES

- 1. Wu C.D., Hu A.G., Zhang L. et al. // J. Am. Chem. Soc. 2005. 127. P. 8940 8941.
- 2. Dinca M., Yu A.F., Long J.R. // J. Am. Chem. Soc. 2006. **128**. P. 8904 8913.
- 3. Milon J., Daniel M.C., Kaiba A. et al. // J. Am. Chem. Soc. 2007. 129. P. 13872 13878.
- 4. Train C., Nuida T., Gheorghe R. et al. // J. Am. Chem. Soc. 2009. 131. P. 16838 16843.
- 5. Krishna R. // Chem. Soc. Rev. 2012. **41**. P. 3099 3118.
- 6. O'Keeffe M., Yaghi O.M. // Chem. Rev. 2012. 112. P. 675 702.
- 7. Zhang J.P., Zhang Y.B., Lin J.B. et al. // Chem. Rev. 2012. 112. P. 1001 1033.
- 8. *Cui Y., Yue Y., Qian G. et al.* // Chem. Rev. 2012. **112**. P. 1126 1162.
- 9. Suenaga Y., Yan S.G., Wu L.P. et al. // J. Chem. Soc., Dalton Trans. 1998. P. 1121 1125.
- 10. Han Z.B., Cheng X.N., Chen X.M. // Cryst. Growth Des. 2005. 5. P. 695 700.
- 11. Ma L.F., Wang L.Y., Hu J.L. et al. // Cryst. Growth Des. 2009. 9. P. 5334 5342.
- 12. Blatov V.A., O'Keeffe M., Proserpio D.M. // CrystEngComm. 2010. 12. P. 44 48.
- 13. Li B., Zhang Y., Li G. et al. // Cryst. Growth Des. 2011. 13. P. 2457 2465.

- 14. Zhang Y.-X., Yang J., Kan W.-Q. et al. // CrystEngComm. 2012. 14. P. 6004 6015.
- 15. Sun D., Cao R., Liang Y. et al. // J. Chem. Soc., Dalton Trans. 2002. P. 1847 1851.
- 16. Thallapally P.K., Tian J., Kishan M.R. et al. // J. Am. Chem. Soc. 2008. 130. P. 16842 16843.
- 17. Liu Y., Xuan W., Cui Y. // Adv. Mater. 2010. 22. P. 4112 4135.
- 18. Zhou D.-S., Wang F.-K., Yang S.-Y. et al. // CrystEngComm. 2009. 11. P. 2548 2554.
- 19. Lin J.-D., Long X.-F., Lin P. et al. // Cryst. Growth Des. 2010. 10. P. 146 157.
- 20. Chen L.-J., Su J.-B., Huang R.-B. et al. // Dalton Trans. 2011. 40. P. 9731 9736.
- 21. Chen J., Li C.-P., Du M. // CrystEngComm. 2011. 13. P. 1885 1893.
- 22. Lucas J.S., Bell L.D., Gandolfo C.M. et al. // Inorg. Chim. Acta. 2011. 378. P. 269 273.
- 23. *Sheldrick G.M.* SADABS, An empirical absorption correction program, Bruker Analytical X-ray Systems. Madison, WI, 1996.
- 24. Sheldrick G.M. SHELXL-97, Program for refinement of crystal structures. University of Göttingen, Germany, 1997.
- 25. Wang J., Xu X.-J., Tao J.-Q. // Acta Crystallogr. 2011. C67. P. m137 m139.
- 26. Wang J., Tao J.-O., Xu X.-J. et al. // Z. Anorg. Allg. Chem. 2012. 638. P. 1261 1264.
- 27. Spek A.L. PLATON, A Multipurpose Crystallographic Tool. Utrecht: Utrecht University, 1998.
- 28. Wen L.L., Li Y.Z., Lu Z.D. et al. // Cryst. Growth Des. 2006. 6. P. 530 537.
- 29. Lin J.G., Zang S.Q., Tian Z.F. et al. // CrystEngComm. 2007. 9. P. 915 921.
- 30. Yang Y., Du P., Ma J.F. et al. // Cryst. Growth Des. 2011. 11. P. 5540 5553.