УДК 532.5.032, 533.6.011.5

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ РАЗВИТИЯ ВОЗМУЩЕНИЙ, ГЕНЕРИРУЕМЫХ ЭЛЕМЕНТАМИ ШЕРОХОВАТОСТИ В СВЕРХЗВУКОВОМ ПОГРАНИЧНОМ СЛОЕ НА ЗАТУПЛЕННОМ КОНУСЕ

Д. В. Хотяновский, С. В. Кириловский, Т. В. Поплавская, А. Н. Кудрявцев

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, 630090 Новосибирск, Россия E-mails: khotyanovsky@itam.nsc.ru, kirilov@itam.nsc.ru, popla@itam.nsc.ru, alex@itam.nsc.ru

Представлены результаты прямого численного моделирования индуцированного шероховатостью развития неустойчивости и перехода к турбулентности в сверхзвуковом пограничном слое на затупленном конусе при значении числа Маха набегающего потока $M_{\infty} = 5,95$. Параметры течения и геометрия модели соответствуют условиям проведенных экспериментов. Рассмотрены следующие типы шероховатостей: случайная распределенная шероховатость, одиночные элементы шероховатости различной формы и группа регулярно расположенных элементов. Проведено сравнение процессов развития неустойчивости и перехода при наличии различных видов шероховатости, обсуждаются возможные механизмы воздействия шероховатости на устойчивость пограничных слоев на затупленных телах.

Ключевые слова: прямое численное моделирование, ламинарно-турбулентный переход, сверхзвуковой пограничный слой, распределенная и одиночная шероховатость, затупленное коническое тело.

DOI: 10.15372/PMTF20190305

Введение. Известно, что переход к турбулентности в пограничном слое сопровождается резким увеличением силы сопротивления и тепловых потоков на поверхности обтекаемого тела. При больших скоростях полета такое увеличение тепловых нагрузок свидетельствует об опасности разрушения летательного аппарата и ведет к необходимости существенного утяжеления тепловой защиты. Поэтому изучение основных механизмов управления ламинарно-турбулентным переходом имеет большое значение для создания перспективных гиперзвуковых летательных аппаратов.

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 14-11-00490п), с использованием вычислительных ресурсов Новосибирского национального исследовательского государственного университета и Сибирского суперкомпьютерного центра, предоставивших часть необходимого программного обеспечения (многопроцессорную версию кода ANSYS Fluent).

[©] Хотяновский Д. В., Кириловский С. В., Поплавская Т. В., Кудрявцев А. Н., 2019

Затупленный конус является типичной формой передней части гиперзвукового летательного аппарата. Поэтому процесс ламинарно-турбулентного перехода на таких телах является предметом интенсивных исследований (см., например, обзор [1], экспериментальные работы [2–4] и результаты прямого численного моделирования [5–7]). При малых радиусах затупления увеличение радиуса приводит к сдвигу точки ламинарнотурбулентного перехода вниз по потоку. Такое поведение согласуется с предсказаниями e^N -метода, основанного на линейной теории устойчивости. Однако, если радиус затупления носика становится больше определенного значения, длина ламинарного участка вновь начинает уменьшаться; это явление известно как реверс перехода. При достаточно больших радиусах переход к турбулентности на затупленных телах происходит значительно раньше, чем это предсказывается линейной теорией. Такой аномально ранний переход, часто наблюдающийся в дозвуковой части течения при наличии большого отрицательного градиента давления, получил название парадокса затупленного тела [8]. Существуют различные объяснения данного феномена, включая механизмы немодального роста [8], однако согласно исследованиям [9] значения N-факторов, получаемые при анализе оптимальных немодальных возмущений, также очень малы, что не позволяет объяснить наблюдаемое в эксперименте положение точки перехода. Таким образом, физические механизмы, обеспечивающие реверс перехода и ранний переход к турбулентности на затупленных телах, остаются неустановленными.

Одним из механизмов раннего перехода может быть влияние шероховатости поверхности модели [4, 9]. Известно, что шероховатость является одним из наиболее важных факторов, влияющих на возникновение и развитие турбулентности в пограничном слое [10, 11]. При сверх- и гиперзвуковом полете шероховатость может быть обусловлена не только конструктивными особенностями поверхности летательного аппарата, но и абляцией. Влияние шероховатости может быть наиболее существенным вблизи носика или передних кромок, где размер элементов шероховатости сравним с толщиной пограничного слоя. Результаты экспериментов с одиночным элементом шероховатости, размещенным на стенке круглого сопла [12] или на поверхности плоского угла сжатия [13], показывают, что в следе за элементом возникает неустойчивость, которая может привести к ламинарно-турбулентному переходу. Численные исследования [14–17], выполненные для случаев расположения элемента шероховатости на плоской пластине, стенке круглого сопла и крыловом профиле, позволили установить, что в результате искажения среднего течения, вызванного наличием такого элемента, в пограничном слое образуются долгоживущие продольные структуры. Результаты линейного анализа устойчивости течения в следе свидетельствуют о появлении новых неустойчивых мод [14], в то время как прямое численное моделирование подтверждает, что их развитие ведет к быстрой турбулизации течения [15–17].

Для исследования влияния шероховатости часто используется число Рейнольдса Re_{kk} , определенное по высоте элемента шероховатости k и параметрам течения на высоте k, вычисленным для ламинарного пограничного слоя на соответствующей гладкой поверхности:

$$\operatorname{Re}_{kk} = \rho_k U_k k / \mu_k.$$

В различных экспериментах наблюдалось, что шероховатость индуцировала переход к турбулентности, в случае если значение Re_{kk} превышает определенное значение, менявшееся при различных условиях эксперимента приблизительно от 200 до 800. Это подтверждают результаты расчетов [18], согласно которым распределенная случайная шероховатость может инициировать переход к турбулентности в сверхзвуковом пограничном слое на плоской пластине [18], причем трехмерные нестационарные пульсации, увеличе-

ние амплитуды которых приводит к переходу, возникают за элементами шероховатости, удовлетворяющими условию $\operatorname{Re}_{kk} > 500$.

В работе [19] с использованием прямого численного моделирования исследовалось влияние периодической и случайной распределенной шероховатости на поверхности полусферической капсулы. Переход к турбулентности наблюдался только при наличии случайной шероховатости при числе Рейнольдса $\operatorname{Re}_{kk} = 406$, рассчитанном по наиболее высокому элементу. По мнению авторов работы [19], это обусловлено неустойчивостью поперечного вихревого течения, возникающего за элементами с $\operatorname{Re}_{kk} > 261$ вследствие расположения их под углом к направлению набегающего потока, которая может быть основной причиной возникновения "парадокса затупленного тела".

Большой объем исследований влияния шероховатости на развитие неустойчивости и переход к турбулентности на затупленных конических телах выполнен в Институте теоретической и прикладной механики СО РАН [20-24] в рамках проекта, поддержанного Российским научным фондом. В экспериментах [20, 21] изучалась зависимость процесса перехода от единичного числа Рейнольдса Re₁. Установлено, что при достижении критического значения Re₁ точка перехода скачкообразно смещалась на носик модели. Если единичное число Рейнольдса изменялось в течение одного пуска, то наблюдался гистерезис перехода: при обратном изменении Re₁ точка, в которой происходил переход, не возвращалась в первоначальное положение. В [22] численно изучалось течение за единичным цилиндрическим элементом шероховатости при Re_{kk} = 700 ÷ 1200. В следе за элементом возникали нестационарные пульсации, которые, однако, затухали ниже по потоку и не приводили к ламинарно-турбулентному переходу. Результаты экспериментального исследования данной проблемы [23] показывают, что турбулизация следа за единичным цилиндрическим элементом происходит уже при $\text{Re}_{kk} = 400 \div 500$. В [24] установлено, что распределенная шероховатость, нанесенная на сферический носик модели, оказывает существенное влияние на процесс перехода. Наиболее существенное влияние оказывала шероховатость, размещенная под углом $\Theta = 90^{\circ}$ (Θ — угол между осью конуса и прямой, соединяющей элемент шероховатости с центром сферы, т. е. в начале собственно конической части модели).

Целью настоящей работы, продолжающей цикл исследований, является прямое численное моделирование развития возмущений, генерируемых шероховатостью в сверхзвуковом пограничном слое на затупленном конусе. Рассматриваются случайная распределенная и одиночная шероховатости, а также взаимодействие группы элементов шероховатости.

1. Постановка задачи и численный метод. При моделировании решаются полные нестационарные уравнения Навье — Стокса для вязкого сжимаемого термически и калорически совершенного двухатомного газа. Полагается, что вязкость зависит от температуры по закону Сазерленда с $T_S = 110.4$ K, теплоемкость рассчитывается в предположении, что число Прандтля является постоянным и равно Pr = 0.72.

При проведении расчетов применялись два вычислительных кода: 1) разработанный в лаборатории вычислительной аэродинамики ИТПМ СО РАН код CFS3D, в котором реализованы несколько TVD и WENO-схем сквозного счета высоких порядков точности [25]; 2) коммерческий пакет ANSYS Fluent.

В настоящей работе для вычисления конвективных потоков в коде CFS3D используется TVD-схема третьего порядка MUSCL с ограничителем minmod [26] и приближенным решением задачи о распаде разрыва на гранях между ячейками сетки с помощью солвера HLLC [27]. Диффузионные члены аппроксимируются центральными разностями второго порядка, для интегрирования по времени применяется явная схема Рунге — Кутты третьего порядка, расчеты проводятся на структурированной криволинейной согласованной с границей расчетной области сетке из гексаэдральных ячеек. Код распараллелен с

Рис. 1. Поле числа Маха, полученное в осесимметричном расчете (a), и изолинии числа Маха, полученные в осесимметричном (1) и трехмерном (2) расчетах (δ) для гладкого конуса с радиусом затупления R = 2 мм

помощью геометрической декомпозиции расчетной области, обмен данными между процессорами организован с помощью библиотеки MPI. Для трехмерных расчетов использовалось до 96 процессоров.

Расчеты развития возмущений за одиночным цилиндрическим элементом шероховатости проводились с помощью коммерческого пакета ANSYS Fluent, позволяющего использовать более подходящую для данного случая неструктурированную расчетную сетку. При вычислении конвективных потоков применялся метод Роу второго порядка точности. Интегрирование по времени осуществлялось с помощью явной схемы Рунге — Кутты второго порядка.

Параметры моделируемого течения и геометрия модели соответствовали условиям экспериментов [20, 21, 23, 24]: число Маха набегающего потока $M_{\infty} = 5,95$, единичное число Рейнольдса $\text{Re}_1 = 37,8 \cdot 10^6 \text{ м}^{-1}$, температура торможения $T_0 = 412,9 \text{ K}$. Модель представляет собой круговой конус с полууглом раствора 7° и сферически затупленным носиком (радиус затупления R = 2; 5 мм), расположенный под нулевым углом атаки.

Моделирование проводится в два этапа. Сначала в осесимметричной постановке вычисляется стационарное течение над гладким конусом (рис. 1,*a*). Затем из двумерной расчетной области вырезается меньшая по размеру, прилегающая к поверхности конуса подобласть (рис. 1,*б*). Путем ее поворота вокруг оси конуса на угол $\Delta \Phi$ строится область для трехмерного расчета и соответствующая расчетная сетка. На поверхность конуса помещаются элементы шероховатости, и сетка соответствующим образом перестраивается, однако на остальных границах положение узлов не меняется.

При проведении трехмерного расчета на передней и верхней границах расчетной области задаются значения газодинамических величин, полученные при осесимметричном расчете, на боковых границах — периодические условия или условия симметрии, на задней границе все переменные экстраполируются из расчетной области. Поверхность тела полагается изотермической с температурой $T_w = 293$ K.

На рис. 1,6 результаты трехмерного расчета, проведенного с такими граничными условиями для гладкого конуса, сравниваются с данными осесимметричного расчета. Осесимметричный расчет проводился на сетке с числом узлов 2000×200 , трехмерный — на сетке с числом узлов $2000 \times 200 \times 200 \times 160 = 64 \cdot 10^6$. Сетка сгущалась вблизи поверхности тела. Видно, что изолинии в расчетах совпадают.

2. Расчеты при наличии случайной распределенной шероховатости. Распределенная шероховатость моделируется набором случайно расположенных элементов следующей формы:

$$h(\rho) = k \cos^2\left(\pi \rho/(2w)\right), \qquad \rho < w.$$

Здесь k — высота элемента; h — локальная высота элемента шероховатости конуса; w — радиус элемента; ρ — расстояние от прямой, направленной по нормали к поверхности и проходящей через вершину элемента. Параметры $k_{\min} < k < k_{\max}$ и $k < w < w_{\max}$ — случайные величины, принимающие значения в указанных диапазонах. Характерный вид распределенной шероховатости на поверхности конуса показан на рис. 2, a.

Первый расчет проведен для шероховатости вблизи точки сопряжения конической и сферической поверхностей. В полосе 0.5 < x/R < 1.0 случайно расположены 50 элементов $(x - \text{расстояние вдоль оси конуса (значение <math>x = 0$ соответствует центру сферы, по которой затуплен носик модели)). Радиус затупления R = 2 мм, предельные значения параметров шероховатости $k_{\min} = 0.01R = 20$ мкм, $k_{\max} = w_{\max} = 0.1R = 200$ мкм. Левая (входная) граница расчетной области соответствует x = 0, правая (выходная) — x = 10R. Размер области в нормальном к поверхности конуса направлении составляет 0.4R на входной; размер в азимутальном направлении $\Delta \Phi = 30^{\circ}$. Размеры сетки те же, что в описанном выше расчете для гладкого конуса.

Течение на верхней границе вычислительной области является сверхзвуковым, число Маха равно М ≈ 2,3. При проведении данного расчета дополнительные нестационарные возмущения не вводились и так же, как в [15–18], полагалось, что неустойчивость оторвавшегося пограничного слоя естественным путем должна приводить к появлению нестационарных пульсаций.

Результаты расчета показывают, что вблизи элементов шероховатости возникают сильные локальные искажения течения в виде подковообразных стационарных возмущений, а в следе за элементами образуются продольные вихревые структуры. Основной вклад в формирование трехмерного вихревого движения, приводящего к появлению значительных нормальной и азимутальной компонент скорости и больших градиентов параметров течения, вносят элементы, размеры которых близки к значению $k_{\rm max}$ и за которыми возникают интенсивные долгоживущие продольные вихри, сохраняющиеся на всем протяжении расчетной области (рис. 2, δ).

Следует отметить, что подобная картина наблюдалась в расчетах пограничного слоя на плоской пластине с распределенной шероховатостью, проводившихся при близких значениях параметров [18]. Однако существенное отличие состоит в том, что на плоской пластине сначала в вихревых следах медленно росли нестационарные пульсации, появляющиеся в зонах отрыва, а затем в области, где вихревые следы взаимодействуют между собой, происходил взрывной рост мелкомасштабных трехмерных пульсаций, заканчивавшийся разрушением ламинарного течения и переходом к турбулентности. В рассматриваемом случае роста возмущений при движении вниз по потоку не происходит (см. рис. 2, δ).

Такое существенное различие можно объяснить влиянием двух факторов. Во-первых, в рассматриваемом случае поток на внешней границе расчетной области является суще-

Рис. 2. Поверхность конуса при наличии случайной распределенной шероховатости (a) и мгновенные поля чисел Маха в различных поперечных сечениях ($\delta - \partial$): $\delta - x = 2R$, $\epsilon - x = 4R$, $\epsilon - x = 6R$, $\partial - x = 8R$

ственно неравномерным (при его ускорении давление на участке между входной и выходной границами уменьшается приблизительно в два раза). Таким образом, пограничный слой находится под действием большого отрицательного градиента давления. Во-вторых, в конической конфигурации течение является расходящимся, что ослабляет локальные градиенты течения в вихревых структурах и увеличивает устойчивость вихревых следов.

Естественно предположить, что вероятность индуцирования перехода можно существенно увеличить, поместив шероховатость ниже по потоку, где число Рейнольдса больше и течение должно быть более неустойчивым. Это сделано во втором расчете. Кроме того, с целью приблизить условия расчета к экспериментальным, в которых всегда присутствуют различные внешние возмущения, вводились дополнительные возмущения в виде вдува и отсоса газа через поверхность.

Координата левой границы расчетной области равна x = 70R, правой — x = 100R, ее размер в азимутальном направлении равен $\Delta \Phi = 15^{\circ}$. Элементы шероховатости располагались внутри полосы 72 < x < 73, $k_{\min} = 0.06R$, $k_{\max} = w_{\max} = 0.3R$. Непосредственно перед элементами, в области $x_1 = 71R < x < x_2 = 72R$, $\varphi_1 = -3.25^{\circ} < \varphi < \varphi_2 = 3.25^{\circ}$, на поверхности конуса располагался источник возмущений. В этой области нормальная компонента скорости равна

$$u_n = AU_{\infty} \sin\left(2\pi \frac{x - x_1}{x_2 - x_1}\right) \cos\left(\pi \frac{\varphi}{\varphi_2 - \varphi_1}\right) \sin\left(2\pi f t\right),$$

где A = 0.05 — амплитуда возмущения; f = 400 кГц — частота возмущения, приблизительно соответствующая частоте наиболее неустойчивого во входном сечении возмущения второй моды (эта частота получена с помощью линейного анализа устойчивости и наблюдалась в эксперименте [28]); U_{∞} — скорость набегающего потока.

Расчет проводился на сетке, состоявшей из $2304 \times 200 \times 120 \approx 73,7 \cdot 10^6$ ячеек. Результаты расчета представлены на рис. 3, 4. На рис. 3,*a* показаны углы φ между вектором $\partial \boldsymbol{u}_{\tau}/\partial n$, вычисленным на поверхности, и образующей конуса, проходящей через данную точку (\boldsymbol{u}_{τ} — касательная к поверхности конуса компонента скорости; n — координата по нормали к поверхности). Показаны только углы, величина которых больше 90°, поэтому фактически визуализированы зоны рециркуляции на поверхности конуса. На рис. 3, δ приведена изоповерхность Q-критерия (половина разности квадратов норм тензора завихренности и тензора скоростей деформаций [29]).

На рис. 4 показаны мгновенное и осредненное по азимутальной координате распределения коэффициента трения по поверхности конуса. На рис. 4 видно, что при наличии случайной распределенной шероховатости и периодического вдува и отсоса структура течения в начале расчетной области становится достаточно сложной, с многочисленными нестационарными отрывными зонами перед и за элементами. Тем не менее порожденные этим взаимодействием вихревые возмущения, за исключением интенсивного вихря в следе за наибольшим элементом, оказываются короткоживущими. При $x \approx 84R$ этот след начинает быстро расширяться в азимутальном направлении, одновременно резко увеличивается коэффициент трения, что свидетельствует о начале ламинарно-турбулентного перехода. Растут амплитуды мелкомасштабных трехмерных пульсаций, течение турбулизуется, причем переход происходит сначала в одной части следа, затем в другой (см. рис. 4, 6). К концу расчетной области область турбулентного течения не успевает распространиться на весь пограничный слой.

3. Расчеты при наличии одиночной шероховатости. Поскольку интенсивные долгоживущие продольные вихри формируются только за наиболее крупными элементами шероховатости, можно предположить, что мелкие элементы не играют роли в индуцировании ламинарно-турбулентного перехода. Это подтверждают экспериментальные данные

Рис. 3. Мгновенные направления течения вблизи поверхности конуса (a) и изоповерхность Q-критерия при различных значениях локальной величины давления (δ)

о наличии критического значения Re_{kk} , при значениях ниже которого наличие шероховатости не способно вызвать переход. Поэтому естественно изучить течение за одиночным, достаточно крупным элементом шероховатости, тем более что влияние таких элементов также исследовалось экспериментально [23].

Подобные расчеты проведены для элементов двух форм: описанной в п. 2 и цилиндрической.

Численное моделирование для элемента первой формы выполнено с помощью кода CFS3D. Элемент, высота и радиус которого равны 0,3R, был размещен в точке x = 72,5R. Расчетная область и параметры вводимых с помощью вдува и отсоса возмущений такие же, как в п. **2**.

Под действием локального периодического возбуждения в следе за элементом на той же частоте возникают нестационарные флуктуации течения. Интенсивность пульсаций достаточно быстро увеличивается в диапазоне 78 < x/R < 86. Увеличение амплитуды нестационарных флуктуаций сопровождается образованием периодической цепочки шпилькооб-

Рис. 4. Мгновенное распределение коэффициента трения по поверхности конуса (a) и распределение осредненного по размаху коэффициента трения вдоль конуса (δ) в случае случайной распределенной шероховатости

разных вихрей, поднимающихся в пограничном слое под некоторым углом к поверхности тела. Однако вниз по течению интенсивность флуктуаций постепенно уменьшается, стабилизируясь при достаточно малых значениях и $x \approx 92R$. Перехода к турбулентности не происходит.

Численное моделирование течения за одиночным цилиндрическим элементом шероховатости выполнено при значениях параметров, взятых из экспериментальной работы [23]. Одиночный элемент шероховатости представлял собой цилиндр диаметром d = 0,3 мм и высотой k = 0,6 мм, помещенный на модели затупленного (R = 5 мм) конуса вблизи точки сопряжения сферической и конической частей при $\Theta = 90^{\circ}$, т. е. в области, где она оказывает наибольшее влияние согласно результатам эксперимента (этому соответствует значение $\text{Re}_{kk} = 4880$). Расчет проводился в области, размер которой в азимутальном направлении составлял $\Delta \Phi = 60^{\circ}$, а задняя граница располагалась на расстоянии 95 мм от точки сопряжения.

Расчет проводился с помощью пакета ANSYS Fluent. Строилась гибридная сетка, состоящая из тетраэдральных и призматических ячеек (рис. 5,a) и включающая три подобласти: зону ударной волны, покрытую призматическими ячейками, зону пограничного слоя, также покрытую призматической сеткой, сгущающейся к поверхности конуса, и об-

Рис. 5. Гибридная неструктурированная расчетная сетка (a), а также изоповерхности продольной завихренности и линии тока (δ, e) : δ — вид сверху, e — вид сбоку; I — зона ударной волны, II — промежуточная зона,

III — зона пограничного слоя; штриховые линии — границы зоны отрыва

ласть между ними, в которой строилась нерегулярная тетраэдральная сетка. Общее число ячеек составляло 13,3 · 10⁶. Расчет выполнялся на 16 процессорах.

Стационарное течение вокруг цилиндрического элемента показано на рис. 5, δ . Перед элементом формируется подковообразный вихрь. Центральные линии тока огибают элемент шероховатости и далее уходят на периферию. Вблизи элемента шероховатости образуются две отрывные зоны: непосредственно перед элементом шероховатости и в следе за ним (штриховые линии). В следе за элементом шероховатости образуются две пары продольных вихрей, вращающихся в противоположных направлениях (на рис. 5, δ видно винтовое закручивание линий тока в следе).

На профилях скорости в следе за элементом на небольшом расстоянии от него имеется точка перегиба, что должно приводить к невязкой неустойчивости течения. Ниже по течению эта особенность исчезает и продольные вихри также ослабевают. Без введения внешних возмущений признаков турбулизации не наблюдается.

Для того чтобы возбудить нестационарные пульсации, в расчете использовались возмущения в виде суперпозиции быстрых акустических волн с частотами f = 50, 110, 170,

Рис. 6. Изоповерхности *Q*-критерия при возбуждении течения внешними акустическими волнами

230, 310, 350 кГц, распространяющихся в набегающем потоке под нулевым углом и имеющих суммарную амплитуду пульсаций давления, равную $0,3p_{\infty}$. Акустические возмущения, проходя через ударную волну и взаимодействуя с элементом шероховатости и течением в пограничном слое и зонах отрыва, порождают нестационарные пульсации в вихревом следе. Образующиеся пальцевидные структуры (рис. 6) ближе к концу расчетной области усложняются, в них появляются вторичные мелкомасштабные трехмерные вихри, свидетельствующие, вероятно, о начале ламинарно-турбулентного перехода.

Таким образом, результаты расчетов показывают, что индуцировать ламинарнотурбулентный переход в пограничном слое на затупленном конусе с помощью одиночного элемента шероховатости достаточно сложно даже при возбуждении пограничного слоя очень интенсивными внешними возмущениями. В расчетах, проведенных для элемента гладкой формы, переход отсутствовал, в расчетах с цилиндрическим элементом признаки перехода наблюдались ближе к концу расчетной области, при этом значение параметра Re_{kk} было очень большим, на порядок больше экспериментальных значений. Заметим, что в экспериментальной работе [23] при тех же параметрах шероховатости переход происходил на носике, непосредственно за цилиндрическим элементом шероховатости.

Следует отметить, что аналогичный результат получен в работе [30], в которой моделировалось течение в гиперзвуковом пограничном слое на плоской пластине с одиночным элементом шероховатости в форме цилиндра или прямоугольной призмы. В следе за элементами наблюдалась существенная нестационарность, однако она не приводила к появлению больших возмущений, зафиксированных в выполненных при тех же условиях экспериментах [31], и тем более к переходу.

4. Взаимодействие группы элементов шероховатости. Течение за отдельным элементом шероховатости турбулизуется значительно хуже, чем за полосой случайно распределенной шероховатости, поэтому можно предположить, что в развитии неустойчивости интенсивных долгоживущих вихревых следов, формирующихся только за достаточно большими элементами шероховатости, существенную роль играет взаимодействие с возмущениями, порождаемыми соседними элементами. Относительное положение элементов также может иметь большое значение. Для проверки этих предположений выполнен расчет для группы взаимодействующих элементов.

Рис. 7. Направление течения вблизи поверхности конуса (a) и изоповерхность Q-критерия при различных значениях нормальной компоненты скорости (b)

Группа состояла из шести элементов, расположение которых показано на рис. 7,*a*: центры элементов передней пары находятся в центральной плоскости $\varphi = 0^{\circ}$, две другие пары в азимутальных плоскостях $\varphi = \pm 6^{\circ}$ сдвинуты вниз по потоку относительно первой пары на расстояние, равное R. В каждой из трех пар передний элемент имел размер k = w = 0.15R, задний — 0.3R, расстояние между центрами двух элементов составляло 0.4R, радиус затупления равен R = 2 мм. Течение возбуждалось нестационарным вдувом (отсосом), осуществлявшимся через отверстие, находившееся непосредственно перед первой парой элементов.

Как и ранее, координата левой границы расчетной области равна x = 70R, правой — x = 100R, размер в азимутальном направлении равен $\Delta \Phi = 15^{\circ}$. Расчет проводился с помощью кода CFS3D на сетке, содержащей $2304 \times 200 \times 160$ ячеек.

На рис. 7, *а* видно, что при выбранных размере и положении элементов перед, за и между элементами каждой пары появляются зоны рециркуляции, которые также могут быть

Рис. 8. Мгновенное распределение коэффициента трения по поверхности конуса (a) и распределение осредненного по размаху коэффициента трения вдоль конуса (b) в случае группы элементов шероховатостей

источником нестационарных флуктуаций и в существенной мере зависят от внешнего возбуждения. Кроме того, сдвиг в расположении пар относительно друг друга может привести к возникновению в вихревых следах за двумя задними парами элементов поперечного течения (соответственно в положительном и отрицательном азимутальных направлениях) и появлению новых мод растущих возмущений, обусловленных его неустойчивостью. Заметим, что неустойчивость поперечного течения в гиперзвуковых пограничных слоях впервые экспериментально обнаружена в работе [32].

Результаты численного моделирования показывают, что взаимодействие элементов вызывает появление растущих нестационарных колебаний в вихревых следах. Вихри, генерируемые каждой парой элементов, развиваются в основном независимо друг от друга вплоть до точки с координатой $x \approx 88R$ (рис. 7,6). При бо́льших значениях x взаимодействие соседних вихрей вызывает интенсивный рост трехмерных флуктуаций, постепенно распространяющихся на всю расчетную область. Ламинарно-турбулентный переход происходит при $x \approx 97R$, что приводит к резкому увеличению коэффициента трения (рис. 8).

Наблюдаемая картина в целом согласуется с гипотезой [19], согласно которой основным механизмом воздействия шероховатости на устойчивость течения в пограничном слое на затупленных телах является генерация поперечного (азимутального течения), неустойчивого к модам возмущений, отсутствующим в пограничных слоях на гладких телах, где азимутальная компонента скорости незначительна или отсутствует. Заключение. С использованием прямого численного моделирования исследовано влияние поверхностной шероховатости на развитие неустойчивости и переход к турбулентности в пограничном слое на затупленном конусе при $M_{\infty} = 5,95$. Рассмотрены случаи случайно распределенной шероховатости, одиночных элементов шероховатости двух различных форм и группы взаимодействующих элементов шероховатости. Показано, что наличие шероховатости приводит к искажению среднего течения, образованию зон рециркуляции вблизи элементов шероховатости, формированию интенсивных долгоживущих продольных вихрей в следах за крупными элементами, появлению и росту нестационарных пульсаций в областях, занятых этими вихрями, и в конечном итоге к взрывному росту мелкомасштабных трехмерных пульсаций, сопровождающемуся разрушением вихрей и переходом к турбулентности. Течение за одиночным элементом шероховатости или случаем группы элементов. Это позволяет сделать вывод, что в процессе развития неустойчивости взаимодействие соседних вихревых следов и, возможно, формирование в результате этого взаимодействия неустойчивого поперечного течения имеет большое значение.

Авторы выражают благодарность А. А. Маслову за внимание к работе, полезные обсуждения, ценные замечания и советы.

ЛИТЕРАТУРА

- Schneider S. P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies // Progress Aerospace Sci. 2004. V. 40, N 1/2. P. 1–50.
- 2. Stetson K., Thompson E., Donaldson J., Siler L. Laminar boundary layer stability experiments on a cone at Mach 8. Pt 2. Blunt cone. Reno, 1984. (Paper / AIAA; N 84-0006).
- Maslov A. A., Shiplyuk A. N., Bountin D. A., Sidorenko A. A. Mach 6 boundary-layer stability experiments on sharp and blunted cones // J. Spacecraft Rockets. 2006. V. 43, N 1. P. 71–76.
- 4. Александрова Е. А., Новиков А. В., Утюжников С. В., Федоров А. В. Экспериментальное исследование ламинарно-турбулентного перехода на затупленном конусе // ПМТФ. 2014. Т. 55, № 3. С. 5–16.
- Li X., Fu D., Ma Y. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone // AIAA J. 2008. V. 46, N 11. P. 2899–2913.
- Li X., Fu D., Ma Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack // Phys. Fluids. 2010. V. 22, N 2. 025105.
- Kara K., Balakumar P., Kandil O. A. Effect of nose bluntness on hypersonic boundary-layer receptivity and stability over cones // AIAA J. 2011. V. 49, N 12. P. 2593–2606.
- Reshotko E., Tumin A. The blunt body paradox a case for transient growth // Laminarturbulent transition: Proc. of the IUTAM Symp., Sedona (USA), 13–17 Sept. 1999. Berlin; Heidelberg: Springer, 2000. P. 403–408.
- 9. Hein S., Theiss A., Di Giovanni A., et al. Numerical investigation of roughness effects on transition on spherical capsules. Kissimmee, 2018. (Paper / AIAA; N 2018-0058).
- Schneider S. P. Effects of roughness on hypersonic boundary-layer transition // J. Spacecraft Rockets. 2008. V. 45, N 2. P. 193–209.
- Schneider S. P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness // J. Spacecraft Rockets. 2008. V. 45, N 6. P. 1090–1105.
- Wheaton B. M., Schneider S. P. Roughness-induced instability in a hypersonic laminar boundary layer // AIAA J. 2012. V. 50, N 6. P. 1245–1256.
- 13. Avalone F., Schrijer F. F. J., Cardone G. Infrared thermography of transition due to isolated roughness elements in hypersonic flows // Phys. Fluids. 2016. V. 28, N 2. 024106.

- 14. Choudhari M., Norris A., Li F., et al. Wake instabilities behind discrete roughness elements in high speed boundary layers. Grapevine, 2013. (Paper / AIAA; N 2013-0081).
- Iyer P. S., Mahesh K. High-speed boundary-layer transition induced by a discrete roughness element // J. Fluid Mech. 2013. V. 729. P. 524–562.
- Subbareddy P. K., Bartkowicz M. D., Candler G. V. Direct numerical simulation of highspeed transition due to an isolated roughness element // J. Fluid Mech. 2014. V. 748. P. 848–878.
- Kurz H. B. E., Kloker M. J. Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer // J. Fluid Mech. 2016. V. 796. P. 158–194.
- Хотяновский Д. В., Кудрявцев А. Н. Прямое численное моделирование перехода к турбулентности в сверхзвуковом пограничном слое на гладких и шероховатых поверхностях // ПМТФ. 2017. Т. 58, № 5. С. 80–92.
- Di Giovanni A., Stemmer C. Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration // J. Fluid Mech. 2018. V. 856. P. 470–503.
- Bountin D., Gromyko Yu., Polivanov P., et al. Effect of roughness of the blunted cone nose-tip on laminar-turbulent transition // AIP Conf. Proc. 2016. V. 1770. 030064.
- Бунтин Д. А., Громыко Ю. В., Маслов А. А и др. Влияние шероховатости затупленной носовой части конуса на положение ламинарно-турбулентного перехода // Теплофизика и аэромеханика. 2016. Т. 23, № 5. С. 655–664.
- 22. Кириловский С. В., Поплавская Т. В. О влиянии одиночной шероховатости на течение в сверхзвуковом пограничном слое на затупленном конусе // Теплофизика и аэромеханика. 2016. Т. 23, № 6. С. 971–974.
- Поливанов П. А., Громыко Ю. В., Сидоренко А. А., Маслов А. А. Турбулизация следа за одиночным элементом шероховатости на затупленном теле при гиперзвуковом числе Маха // ПМТФ. 2017. Т. 58, № 5. С. 102–110.
- Gromyko Yu., Bountin D., Polivanov P., et al. The effect of roughness of blunted nose of cone on the development of disturbances and laminar-turbulent transition in a hypersonic boundary layer // AIP Conf. Proc. 2017. V. 1893. 030148.
- 25. Кудрявцев А. Н., Поплавская Т. В., Хотяновский Д. В. Применение схем высокого порядка точности при моделировании нестационарных сверхзвуковых течений // Мат. моделирование. 2007. Т. 19, № 7. С. 39–55.
- 26. Laney C. B. Computational gasdynamics. Cambridge: Cambridge Univ. Press, 1998.
- Batten P., Clarke N., Lambert C., Causon D. M. On the choice of wavespeeds for the HLLC Riemann solver // SIAM J. Sci. Comput. 1997. V. 18, N 6. P. 1553–1570.
- Borisov S. P., Bountin D. A., Gromyko Yu. V., et al. Experimental and numerical investigation of development of disturbances in the boundary layer on sharp and blunted cone // AIP Conf. Proc. 2016. V. 1770. 030057.
- Lesieur M. Large-eddy simulations of turbulence/ M. Lesieur, O. Métais, P. Comte. Cambridge: Cambridge Univ. Press, 2005.
- Chang C.-L., Choudhari M. M. Hypersonic viscous flow over large roughness elements // Theor. Comput. Fluid Dynamics. 2011. V. 25. P. 85–104.
- 31. Danehy P. M., Garcia A. P., Borg S., et al. Fluorescence visualization of hypersonic flow past triangular and rectangular boundary-layer trips. Reno, 2007. (Paper / AIAA; N 2007-0536).
- Craig S. A., Saric W. S. Crossflow instability in a hypersonic boundary layer // J. Fluid Mech. 2016. V. 808. P. 224–244.

Поступила в редакцию 29/X 2018 г., после доработки — 29/X 2018 г. Принята к публикации 29/X 2018 г.