2013. Том 54, № 3

Май – июнь

C. 494 – 501

УДК 546.271:547.495.9: 548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОМПЛЕКСА N,N',N"-ТРИФЕНИЛГУАНИДИНИЙ-*БИС*-[η⁵-π-(3)-ДИКАРБОЛЛИД]Ni(III)

Т.М. Полянская, М.К. Дроздова, В.В. Волков

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск E-mail: polyan@niic.nsc.ru

Статья поступила 24 мая 2012 г.

Получены монокристаллы и проведен РСА нового соединения, содержащего трифенилгуанидиний и *бис*(дикарболлид)никеля(III) [C(NHC₆H₅)₃][Ni(B₉C₂H₁)₂]. Кристаллографические данные: C₂₃H₄₀B₁₈N₃Ni, M = 611,87, система моноклинная, пр. гр. $P2_1/c$, параметры элементарной ячейки: a = 21,9085(5), b = 19,9294(4), c = 14,8721(4) Å, $\beta = 91,4033(9)^{\circ}$, V = 6491,5(4) Å³, Z = 8, $d_{\text{выч}} = 1,252 \text{ г/см}^3$, T = 100 K, F(000) = 2536, $\mu = 0,621 \text{ мм}^{-1}$. Структура расшифрована прямым и Фурье методами и уточнена полноматричным МНК в анизотропно/изотропном (для атомов Н) приближении до заключительного фактора $R_1 = 0,053$ для $10429 I_{hkl} \ge 2\sigma_I$ (дифрактометр Bruker X8 APEX, MoK_α-излучение). Она содержит два независимых катиона [C(NHC₆H₅)₃]⁺, различающихся конформацией, и два аниона [Ni(B₉C₂H₁₁)₂]⁻ с одинаковой трансоидной конформацией. Зафиксированы три типа слабых межмолекулярных взаимодействий: N—H^{δ+...δ-}H—B; С—H····π между атомами H(C) кластерных анионов и делокализованными π -системами Ph-колец катионов; π ····π взаимодействия Ph-колец катиона 2 друг с другом.

Ключевые слова: низкотемпературный РСА, кристаллическая структура, трифенилгуанидиний, *бис*(дикарболлид)никеля, межмолекулярные взаимодействия.

Химия гидридов бора (боранов) интенсивно развивается последние десятилетия, поскольку бораны обладают важными функциональными свойствами [1-3]. Ее вещественные объекты могут быть подразделены на два класса. Первый — простейшие вещества, такие как боран BH₃; диборан(6) В₂Н₆; аддукты L·BH₃; анион тетрагидроборат BH₄⁻, их производные и др. Второй обширный и сложный класс — высшие представители, такие как: пентаборан(9) В₅Н₉; декаборан(14) В₁₀Н₁₄; его димер В₁₈Н₂₂ и полимеры на их основе; боразин цикло-Н₃В₃N₃H₃; трехмерные ароматические анионы $closo-B_nH_n^{2-}$, где n = 4—12; opmo-карборан(12) $B_{10}C_2H_{12}$; его анионные производные $B_9C_2H_{12}^-$, $B_9C_2H_{11}^{2-}$; $[\eta^5 - \pi - Ni^{III}(B_9C_2H_{11})_2]^-$, $[NiCb_2]^-$; $B_{11}H_{11}S$, а также великое множество других. Возможны многочисленные сочетания этих сложных кластеров с катионами, образованными фрагментами органической химии. Таким объектом является комплекс $\{[(C_6H_5)NH]_2C=NH(C_6H_5)\}^+[\eta^5-\pi-(3)-Ni^{III}(B_9C_2H_{11})_2]^-$ (1), образованный катионом трифенилгуанидиния (далее Ph₃GH⁺) и анионом бис(дикарболлид)никеля(III) [NiCb₂]⁻. В 1 присутствуют гидридные атомы H⁻ связей B^{δ^+} —H^{δ^-} в производном карборана, классические углеводородные связи $C^{\delta-}$ — $H^{\delta+}$, фрагменты N—H и C=N, а также два типа ароматических фрагментов с их делокализацией электронов по атомам: фенил [C₆H₅] и трехмерный кластерный ароматический анион $(B_9C_2H_{11})^{2-}$ [4]. Цель данной работы — определение методом PCA структуры сложного соединения 1. Она является продолжением и развитием исследований в этом направлении: ра-

[©] Полянская Т.М., Дроздова М.К., Волков В.В., 2013

нее нами исследована структура, содержащая этот же катион [Ph_3GH^+] с анионом BPh_4^- , производном тетрагидробората BH_4^- [5].

Синтез комплекса 1 и получение монокристаллов. Аморфный продукт 1 получен по реакции трифенилгуанидиния хлорида гидрата (2) с солью аниона $Cs^+[\pi-Ni^{III}(B_9C_2H_{11})_2]^-$ (3):

 $[C(C_6H_5NH)_3]Cl \cdot H_2O(\mathbf{2}) + C_8NiCb_2(\mathbf{3}) \rightarrow [C(C_6H_5NH)_3][NiCb_2] \downarrow (\mathbf{1}) + C_8Cl + H_2O.$

Навеску перекристаллизованного из воды (2) (марки Ч) 0,150 г (0,44 ммоля) растворяли при нагревании в 150 мл смеси 1:1 H₂O и ацетатного буферного раствора с pH 4,56. Продукт **3**, полученный по [6, 7], 0,201 г (0,44 ммоля) растворяли в 400 мл той же смеси с добавлением 0,05 г Na₂SO₃. Растворы реагентов охлаждали до комнатной температуры. Профильтрованный раствор **3** приливали к раствору **2** при интенсивном перемешивании. Образовавшийся желтозеленый осадок после коагуляции отфильтровывали, трижды промывали водой, высушивали в вакууме при комнатной температуре. Получено 0,220 г (0,36 ммоля) продукта **1**, выход 82,0 %. Продукт растворим в ацетоне, CH₃CN, ДМФА, ДМСО, C₆H₆, CHCl₃, CH₂Cl₂, TГФ; нерастворим в воде и CCl₄. При медленном испарении при комнатной температуре раствора продукта в смеси CH₂Cl₂ + CCl₄ выделены коричневые кристаллы, пригодные для PCA.

РСА 1. Съемку монокристаллов проводили на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 APEX, оснащенном двухкоординатным CCD-детектором, при температуре 100 К по стандартной методике (МоК_а-излучение, графитовый монохроматор). Структура расшифрована комбинацией прямого метода (по программе SIR-97 [8]) и разностных Фурье-синтезов. Уточнение координат и тепловых параметров неводородных атомов проведено по комплексу программ SHELXL-97 [9] в анизотропном приближении полноматричным методом наименьших квадратов. Шесть атомов водорода у атомов азота в катионах локализованы в разностных синтезах электронной плотности, координаты остальных атомов Н рассчитаны геометрически и включены в уточнение с фиксированными позиционными и тепловыми параметрами, равными U_{экв} атома С или В, связанного с данным атомом H, атомы H(N) в гуанидиниевых группировках — без наложения ограничений. Кристаллографические характеристики соединения, детали эксперимента, а также параметры определения и уточнения структуры приведены в табл. 1. Длины связей в катионах приведены в табл. 2, в анионах — в табл. 3, валентные углы в катионах — в табл. 4, в анионах — в табл. 5. Данные по структуре 1 депонированы в [10] (CCDC 874015) и могут быть получены по адресу http://www.ccdc.cam.ac.uk/products/csd/request/ или у авторов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным PCA состав 1 — $[C(C_6H_5NH)_3]^+[NiCb_2]^-$, т.е. комплекс не сольватирован, и его кристаллическая структура построена из катионов Ph_3GH^+ и анионов $[NiCb_2]^-$ в соотношении 1:1. Все атомы структуры занимают общие позиции. В симметрически независимой части моноклинной элементарной ячейки 1 содержатся два катиона Ph_3GH^+ и два аниона $[NiCb_2]^-$. Строение ионов и схема нумерации атомов показаны на рис. 1 и 2.

Геометрия катионов обычная (см. рис. 1). Тригональные гуанидиниевые центральные фрагменты обоих катионов — группы CN₃ — фактически плоские: их среднеквадратичные отклонения равны 0,000 и 0,002 Å. Соответствующие суммы валентных углов NCN при центральных атомах C(1) и C(20) равны 360,1 и 359,9° с интервалами варьирования 118,7(2)—121,7(2) и 119,5(2)—120,8(2)°. Длины связей С—N находятся в интервале 1,330(3)—1,340(3) Å (средн. 1,335(3) Å). Это значение гораздо ближе к среднему значению длины двойной связи С—N 1,29 Å, чем одинарной 1,44 Å. Оно отражает резонансную структуру гуанидиния. Одинарная связь N—C(Ph) варьируется в интервале 1,433(3)—1,442(3) Å (средн. 1,438(3) Å). Максимальное отличие длин связей С—N в центральных плоских фрагментах CN₃ и связей N—C(Ph) фактически укладывается в 3σ. Индивидуальные углы CNH заметно отличаются от 120° из-за участия атомов водорода в невалентных взаимодействиях.

Брутто-формула	$C_{23}H_{40}B_{18}N_3Ni$
Молекулярный вес	611,87
Температура, К	100(2)
Длина волны, Å	0,71073
Кристаллическая сингония	Моноклинная
Пространственная группа	$P2_{1}/c$
Параметры элементарной ячейки <i>a</i> , <i>b</i> , <i>c</i> , Å β, град.	21,9085(5), 19,9294(4), 14,8721(4) 91,4033(9)
Объем, Å ³	6491,5(4)
Ζ	8
Плотность (расчет.), г/см ³	1,252
Коэффициент поглощения, мм ⁻¹	0,621
F(000)	2536
Размеры кристалла, мм	0,206×0,096×0,065
Область сбора данных по θ, град.	0,93—31,55
Интервалы индексов отражений	$-29 \le h \le 29, -23 \le k \le 28, -14 \le l \le 20$
Измер. / независ. отражений / R(int)	52482 / 18529 / 0,061
Отражений с $I \ge 2\sigma(I)$	10429
Число уточнявшихся параметров	835
Метод уточнения	Полноматричный на основе F^2
Добротность уточнения по F^2	0,971
Заключительный R -фактор [$I > 2\sigma(I)$]	R1 = 0,0528, wR2 = 0,1224
<i>R</i> -фактор (по всему массиву)	R1 = 0,0997, wR2 = 0,1216
Остаточная электронная плотность (max / min), e/Å ⁻³	0,45 / -0,39

Кристаллографические данные, характеристики эксперимента и параметры уточнения для структуры [C(NHC₆H₅)₃][Ni(C₂B₉H₁₁)₂]

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Основные длины связей (1, Å в катионах	$[C(NHC_{6}H_{5})_{3}]^{+}$	в структуре [$C(NHC_6H_5)_3$	$[Ni(C_2B_9H_{11})_2]$

Связь	d	Связь	d	Связь	d	Связь	d	
	Катион 1							
	1 222(2)		1 20 4(2)		1 200(2)		1.007(0)	
C(1) - N(1)	1,332(3)	C(2) - C(7)	1,384(3)	C(8) - C(9)	1,389(3)	C(14) - C(19)	1,387(3)	
C(1) - N(2)	1,338(3)	C(2)—C(3)	1,382(3)	C(8)—C(13)	1,390(3)	C(14)—C(15)	1,388(3)	
C(1) - N(3)	1,340(3)	C(3)—C(4)	1,387(3)	C(9)—C(10)	1,381(3)	C(15)—C(16)	1,385(3)	
N(1)—C(2)	1,439(3)	C(4)—C(5)	1,388(4)	C(10)—C(11)	1,386(3)	C(16)—C(17)	1,379(4)	
N(2)—C(8)	1,437(3)	C(5)—C(6)	1,368(4)	C(11)—C(12)	1,385(3)	C(17)—C(18)	1,378(3)	
N(3)—C(14)	1,436(3)	C(6)—C(7)	1,388(3)	C(12)—C(13)	1,385(3)	C(18)—C(19)	1,395(3)	
			Кат	ион 2				
C(20) $N(4)$	1 222(2)	C(21) $C(20)$	1 29((2)	C(27) $C(29)$	1 200(2)	C(22) = C(24)	1 204(2)	
C(20) - N(4)	1,333(3)	C(21) - C(20)	1,380(3)	C(27) - C(28)	1,389(3)	C(33) - C(34)	1,384(3)	
C(20)—N(5)	1,330(3)	C(21)—C(22)	1,380(3)	C(27)—C(32)	1,387(3)	C(33)—C(38)	1,389(3)	
C(20)—N(6)	1,340(3)	C(22)—C(23)	1,394(3)	C(28)—C(29)	1,388(3)	C(34)—C(35)	1,381(3)	
N(4)—C(21)	1,439(3)	C(23)—C(24)	1,380(4)	C(29)—C(30)	1,374(4)	C(35)—C(36)	1,381(3)	
N(5)—C(27)	1,433(3)	C(24)—C(25)	1,387(3)	C(30)—C(31)	1,369(4)	C(36)—C(37)	1,389(3)	
N(6)—C(33)	1,442(3)	C(25)—C(26)	1,380(3)	C(31)—C(32)	1,385(3)	C(37)—C(38)	1,380(3)	

Puc. 1. Строение двух сортов катионов трифенилгуанидиния (*a*) и (δ) с нумерацией атомов в структуре [C(NHC₆H₅)₃][Ni(B₉C₂H₁₁)₂]

Рһ-кольца катионов также фактически плоские: среднеквадратичные отклонения их плоскостей, содержащих атомы C(2)+C(7) (далее плоскость 1), C(8)+C(13) (пл. 2), C(14)+C(19) (пл. 3), C(21)+C(26) (пл. 4), C(27)+C(32) (пл. 5), C(33)+C(38) (пл. 6) не превышают 0,007 Å. Длины связей С—С в кольцах находятся в интервале 1,368(4)—1,395(3) Å (средн. 1,384(3) Å), углы ССС — в интервале 118,8(2)—121,2(2)° (средн. 120°). Конформация катионов существенно различается разворотами Рһ-колец: в катионе *1* двугранные углы между центральным плоским фрагментом C(1)N₃ и плоскостями Рһ-колец 1, 2 и 3 равны 74,3, 58,1 и 51,7°. В катионе *2* двугранные углы между центральным плоским фрагментом C(20)N₃ и плоскостями Рһ-колец 4, 5

и 6 равны 57,4, 60,0 и 80,0°. Двугранные углы между плоскостями Ph-колец равны 93,2 (1, 2), 106,5 (1, 3) и 95,3° (2, 3) в катионе l и 93,4 (4, 5), 99,8 (4, 6) и 120,9° (5, 6) в катионе 2. Центральные плоские фрагменты CN₃ двух кристаллографически независимых катионов почти параллельны друг другу, угол между их среднеквадратичными плоскостями равен 6°.

Анионы представляют собой два икосаэдра с общей вершиной, которая занята атомом Ni^{III} (см. рис. 2). В итоге в анионах две

Рис. 2. Строение анионов [Ni(1)(B₉C₂H₁₁)₂]⁻ (*a*) и [Ni(2)(B₉C₂H₁₁)₂]⁻ (б) с нумерацией атомов в структуре [C(NHC₆H₅)₃][Ni(B₉C₂H₁₁)₂]

Таблица З

Основные валентные углы ω , град. в катионах $[C(NHC_6H_5)_3]^+$ в структуре $[C(NHC_6H_5)_3][Ni(C_2B_9H_{11})_2]$

	_ 、			=			
ω	Угол	ω	Угол	ω			
Катион 1							
122,5(2)	C(5)—C(4)—C(3)	119,4(2)	C(11)—C(12)—C(13)	120,6(2)			
126,7(2)	C(6) - C(5) - C(4)	120,8(2)	C(8) - C(13) - C(12)	119,1(2)			
125,7(2)	C(5)—C(6)—C(7)	120,3(2)	C(19) - C(14) - C(15)	120,7(2)			
118,7(2)	C(2) - C(7) - C(6)	118,9(2)	C(19) - C(14) - N(3)	121,1(2)			
119,7(2)	C(9)—C(8)—C(13)	120,8(2)	C(15)-C(14)-N(3)	118,2(2)			
121,7(2)	C(9)—C(8)—N(2)	119,0(2)	C(14) - C(15) - C(16)	119,2(2)			
121,2(2)	C(13)—C(8)—N(2)	120,1(2)	C(17)—C(16)—C(15)	120,5(2)			
118,5(2)	C(8)—C(9)—C(10)	119,2(2)	C(18)—C(17)—C(16)	120,2(2)			
120,3(2)	C(9)—C(10)—C(11)	120,7(2)	C(17)—C(18)—C(19)	120,2(2)			
119,4(2)	C(12)-C(11)-C(10)	119,6(2)	C(14)-C(19)-C(18)	119,1(2)			
	Катион <i>2</i>						
125,6(2)	C(22)—C(23)—C(24)	120,5(2)	C(30)—C(31)—C(32)	120,6(3)			
127,2(2)	C(25)—C(24)—C(23)	119,7(2)	C(31)—C(32)—C(27)	119,0(2)			
122,4(2)	C(24)—C(25)—C(26)	120,4(2)	C(34)—C(33)—C(38)	120,7(2)			
119,5(2)	C(21)—C(26)—C(25)	119,4(2)	C(34)—C(33)—N(6)	119,8(2)			
119,6(2)	C(28)—C(27)—C(32)	120,8(2)	C(38)—C(33)—N(6)	119,5(2)			
120,8(2)	C(28)—C(27)—N(5)	118,1(2)	C(35) - C(34) - C(33)	119,4(2)			
121,1(2)	C(32)—C(27)—N(5)	120,8(2)	C(34)—C(35)—C(36)	120,3(2)			
120,0(2)	C(29)—C(28)—C(27)	118,8(2)	C(35)—C(36)—C(37)	120,1(2)			
118,8(2)	C(28)—C(29)—C(30)	120,5(3)	C(36)—C(37)—C(38)	120,0(2)			
118,9(2)	C(31)—C(30)—C(29)	120,4(2)	C(33)—C(38)—C(37)	119,5(2)			
	 ω 122,5(2) 126,7(2) 125,7(2) 119,7(2) 121,7(2) 121,2(2) 118,5(2) 120,3(2) 119,4(2) 125,6(2) 127,2(2) 122,4(2) 119,5(2) 119,6(2) 120,8(2) 121,1(2) 120,0(2) 118,8(2) 118,9(2) 	$\begin{tabular}{ c c c c } \hline V\mbox{гол} \\ \hline $Kathom I \\ 122,5(2) $C(5)-C(4)-C(3) \\ 126,7(2) $C(6)-C(5)-C(4) \\ 125,7(2) $C(5)-C(6)-C(7) \\ 118,7(2) $C(2)-C(7)-C(6) \\ 119,7(2) $C(9)-C(8)-N(2) \\ 121,7(2) $C(9)-C(8)-N(2) \\ 121,7(2) $C(9)-C(8)-N(2) \\ 121,2(2) $C(13)-C(8)-N(2) \\ 121,2(2) $C(13)-C(8)-N(2) \\ 120,3(2) $C(9)-C(10)-C(11) \\ 119,4(2) $C(12)-C(11)-C(10) \\ \hline $Kathom 2 \\ 125,6(2) $C(22)-C(23)-C(24) \\ 127,2(2) $C(22)-C(23)-C(24) \\ 127,2(2) $C(24)-C(25) \\ -C(24)-C(25) \\ 122,4(2) $C(24)-C(25)-C(26) \\ 119,5(2) $C(21)-C(26)-C(25) \\ 119,6(2) $C(28)-C(27)-N(5) \\ 120,8(2) $C(28)-C(27)-N(5) \\ 121,1(2) $C(28)-C(29)-C(30) \\ 118,8(2) $C(28)-C(29)-C(30) \\ 118,9(2) $C(31)-C(30)-C(29) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline V{\rm гол}$ & $$$$$$$$$$$$$$$$$$$$$ Kathoh $I$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$				

Таблица 4

	0		
	$i = \frac{1}{2} $	FC/	
1 nunin coasou d 1	$\Lambda \rho \alpha \mu \mu \rho \mu \rho \mathbf{N} 1 \mathbf{N} 1 \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{H} \mathbf{N} \mathbf{I}$	o communition 1	N H (. H .) . U N 1 (. R . H .) . I
$/L_{\mu}$	\neg b $unuune \mathbf{N} \mathbf{U} \mathbf{U} \mathbf{U} $	$b \cup m \cup v \otimes m \cup v \otimes v \otimes v$	

Связь	d	Связь	d	Связь	d	Связь	d
Ni(1) = B(19)	2 093(3)	B(2) = C(39)	1 678(3)	C(39) - C(40)	1 556(3)	B(13) - C(41)	1 733(4)
Ni(1) - B(9)	2,100(3)	B(2) - B(3) B(2)-B(3)	1,757(4)	C(39) - B(9)	1,736(4)	B(13) - B(14)	1,767(5)
Ni(1)—B(7)	2,105(3)	B(2)—B(6)	1,778(4)	C(40)—B(7)	1,746(4)	B(14)—C(42)	1,676(4)
Ni(1)—B(17)	2,116(3)	B(2)—B(9)	1,805(4)	B(7)—B(8)	1,782(4)	B(14)—B(15)	1,793(4)
Ni(1)—C(41)	2,124(2)	B(3)—C(39)	1,724(4)	B(8)—B(9)	1,782(4)	B(14)—B(17)	1,805(4)
Ni(1)—C(40)	2,128(2)	B(3)—C(40)	1,724(3)	B(11)—B(13)	1,754(4)	B(15)—B(18)	1,768(4)
Ni(1)—C(39)	2,135(2)	B(3)—B(4)	1,760(4)	B(11)—B(16)	1,777(4)	B(15)—B(16)	1,769(4)
Ni(1)—C(42)	2,142(2)	B(4)—C(40)	1,679(4)	B(11)—B(15)	1,785(4)	B(15)—B(17)	1,796(4)
Ni(1)—B(18)	2,170(3)	B(4)—B(7)	1,798(4)	B(11)—B(14)	1,785(4)	B(16)—B(18)	1,770(4)
Ni(1)—B(8)	2,173(3)	B(4)—B(5)	1,801(4)	B(11)—B(12)	1,789(5)	B(16)—B(19)	1,784(4)
B(1) - B(3)	1,762(4)	B(5)—B(6)	1,760(4)	B(12)—C(41)	1,688(4)	C(41)—C(42)	1,570(3)
B(1)—B(6)	1,781(4)	B(5)—B(8)	1,772(4)	B(12)—B(13)	1,761(4)	C(41)—B(19)	1,738(3)
B(1)—B(5)	1,782(4)	B(5)—B(7)	1,789(4)	B(12)—B(16)	1,782(4)	C(42)—B(17)	1,741(4)
B(1)—B(2)	1,787(4)	B(6)—B(8)	1,777(4)	B(12)—B(19)	1,790(4)	B(17)—B(18)	1,782(4)
B(1) - B(4)	1,788(4)	B(6)—B(9)	1,788(4)	B(13)—C(42)	1,722(4)	B(18)—B(19)	1,781(4)

Таблица 5

		= . ,					-
Связь	d	Связь	d	Связь	d	Связь	d
Ni(2) - B(37)	2,108(3)	B(22)-C(43)	1,674(3)	C(43) - C(44)	1,568(3)	B(33)-C(45)	1,727(4)
Ni(2)—B(29)	2,110(3)	B(22)—B(23)	1,768(4)	C(43)—B(29)	1,743(4)	B(33)—B(34)	1,764(5)
Ni(2)—B(39)	2,110(3)	B(22)—B(26)	1,790(4)	C(44)—B(27)	1,740(4)	B(34)—C(46)	1,674(4)
Ni(2)—B(27)	2,116(3)	B(22)—B(29)	1,802(4)	B(27)—B(28)	1,773(4)	B(34)—B(35)	1,786(4)
Ni(2)—C(44)	2,133(2)	B(23)—C(44)	1,725(4)	B(28)—B(29)	1,788(4)	B(34)—B(37)	1,793(4)
Ni(2)—C(46)	2,138(2)	B(23)—C(43)	1,728(4)	B(31)—B(33)	1,755(4)	B(35)—B(36)	1,766(4)
Ni(2)—C(45)	2,138(2)	B(23)—B(24)	1,759(5)	B(31)—B(35)	1,770(4)	B(35)—B(38)	1,774(4)
Ni(2)—C(43)	2,143(2)	B(24)—C(44)	1,674(4)	B(31)—B(32)	1,782(4)	B(35)—B(37)	1,795(4)
Ni(2)—B(28)	2,189(3)	B(24)—B(25)	1,786(4)	B(31)—B(36)	1,784(4)	B(36)—B(38)	1,782(3)
Ni(2)—B(38)	2,189(3)	B(24)—B(27)	1,794(4)	B(31)—B(34)	1,785(4)	B(36)—B(39)	1,792(4)
B(21)—B(23)	1,753(4)	B(25)—B(26)	1,764(4)	B(32)—C(45)	1,678(3)	C(45)—C(46)	1,558(3)
B(21)—B(22)	1,779(4)	B(25)—B(28)	1,781(4)	B(32)—B(33)	1,773(4)	C(45)—B(39)	1,741(4)
B(21)—B(25)	1,780(4)	B(25)—B(27)	1,798(4)	B(32)—B(36)	1,779(4)	C(46)—B(37)	1,741(4)
B(21)—B(24)	1,788(4)	B(26)—B(28)	1,770(4)	B(32)—B(39)	1,799(4)	B(37)—B(38)	1,783(4)
B(21)—B(26)	1,791(4)	B(26)—B(29)	1,790(4)	B(33)—C(46)	1,725(4)	B(38)—B(39)	1,789(4)

Длины связей d, Å в анионе $[Ni(2)(C_2B_9H_{11})_2]^-$ в структуре $[C(NHC_6H_5)_3][Ni(C_2B_9H_{11})_2]^-$

плоскости {C₂B₃} связаны с атомом Ni по η^5 -типу. Конформация анионов трансоидная, т.е. реализуется *транс*-положение пар атомов С—С лигандов [Cb]^{2–} в среднеквадратичных плоскостях, определяемых двумя пятиугольными гранями {C₂B₃}. Атом Ni(1) отстоит от них фактически на одинаковом расстоянии, равном 1,545 Å, атом Ni(2) — чуть подальше, на 1,557 и 1,556 Å.

Среднеквадратичные плоскости, определяемые двумя { C_2B_3 } гранями, почти параллельны, двугранные углы φ равны 1,7 и 0,6° для анионов *1* и *2* соответственно. Пять атомов { C_2B_3 } в каждой грани не точно компланарны: грани изогнуты по линиям B(7)…B(9) и B(17)…B(19) (анион *1*), B(27)…B(29) и B(37)…B(39) (анион *2*) в конформации *конверта* (φ 6,0 и 6,3°; 173,6 и 173,5° соответственно). Максимальные отклонения от среднеквадратичных плоскостей { C_2B_3 } не превышают 0,047 Å. Нижние пентагональные пояса B(2)—B(3)—B(4)—B(5)—B(6) и B(12)—B(13)—B(14)—B(15)—B(16) (анион *1*), B(22)—B(23)—B(24)—B(25)—B(26) и B(32)—B(33)—B(34)—B(35)—B(36) (анион *2*) также изогнуты по линиям B(2)…B(4) и B(12)…B(14); B(22)…B(24) и B(32)…B(34) в конформации *конверта* с одинаковым углом φ 5,2° (анион *1*); и углами 174,3 и 174,1° (анион *2*). Углы φ между пентагональными поясами в каждом икосаэдрическом фрагменте лигандов *нидо*-[Cb]²⁻ анионов *1* и *2* равны 1,4 и 1,3; 1,6 и 1,5° соответственно.

Отметим еще тот факт, что в обоих анионах четыре связи Ni—В короче четырех связей Ni—C (см. табл. 3), хотя ковалентный радиус атома В больше, чем атома C. В итоге расстояния от атомов Ni до координирующих атомов карборановых лигандов укладываются в интервал 2,094(3)—2,189(3) Å. Подобное явление уже неоднократно наблюдали для ряда соединений аниона [NiCb₂]⁻ с другими катионами, например, с $[Me_4N]^+$ [11], $[C_6H_4S_4]^+$ (refcode YEDVIM, CBSD [10]), $[H(1,10-C_{12}H_8N_2)_2]^+$ [12], $[(C_6H_5)_4P]^+$ [13], где имеет место усиление связей металл—бор за счет связей металл—углерод. Кластерные атомы C в группе —C₂— располагаются на расстояниях 1,556÷1,570 Å (средн. 1,563(3) Å). Межатомные расстояния B—B и B—C лежат в интервалах 1,753(4)—1,805(4) и 1,674(4)—1,746(4) Å (средн. 1,780(4) и 1,715(4) Å соответственно).

Укладка ионов в 1 в проекции структуры на плоскость (001) приведена на рис. 3.

Отметим, что в структуре 1 наблюдаются три типа слабых межмолекулярных взаимодействий [14]. Первый тип — это межионные взаимодействия с участием атомов H(N) гуаниди-

499

Т.М. ПОЛЯНСКАЯ, М.К. ДРОЗДОВА, В.В. ВОЛКОВ

Рис. 3. Проекция кристаллической структуры [C(NHC₆H₅)₃][Ni(B₉C₂H₁₁)₂] на плоскость (001)

ниевых групп катионов и атомов H(B) анионов N—H^{δ+}...^δ-H—B, в которых участвуют по одному атому H(N) катионов 1 и 2: N(1)—H(1N)…H(5B)— N(5) - H(5N) - H(28B) - B(28)B(5): (рис. 4, а и б). Соответствующие расстояния $H(N) \cdots H(B)$ равны 2,23 и 2,33 Å, углы на атомах H(N) равны 156 и 156°; на атомах Н(В) — 129 и 142°. У катиона 2 имеется еще контакт атома H(6N) с атомом H(15B) аниона 1 — N(6)—H(6N)····H(15B)—B(15) ван-дер-ваальсовым расстоянием С H(N)…H(B) 2,41 Å и углами на H(N) и H(B) 169 и 120°. При этом атом B(15) находится в позиции антиподной атому

С(41А) аниона (см. рис. 4, а), участвующему во взаимодействии второго типа.

Второй тип взаимодействий — взаимодействия кластерных атомов $C(Cb^{2-})$ с делокализованными π -системами Ph-колец катионов C—H··· π . В них участвуют два атома H(C) аниона *1* и один H(C) аниона *2*, одна π -система катиона *1* и две π -системы катиона *2*: C(39)—H(39)··· π (C33÷C38); C(41)—H(41)··· π (C2÷C7); C(46)—H(46)··· π (C21÷C26) (см. рис. 4, δ и *a*). Расстояния H(C)··· π равны 2,63, 2,82 и 3,01 Å соответственно, углы на атомах H(C) — 157, 171 и 168°. Интересно, что атом C(39) аниона *1* расположен в *транс*-положении относительно C(41) и антиподном по отношению к атому B(5), задействованному во взаимодействии N—H^{δ+}···^{δ–}H—B.

Третий тип — это стэкинговое π ···· π -взаимодействие "offset"-типа параллельных Ph-колец (C21÷C26) катиона 2, связанных друг с другом центром инверсии, с межплоскостным расстоянием ~3,45 Å (см. рис. 4, e).

Рис. 4. Примеры систем водородных связей N—H^{δ+…δ–}H—B; C—H(C)…π катионов Ph₃GH⁺ (1) (a) и Ph₃GH⁺ (2) (б) в структуре [C(NHC₆H₅)₃][Ni(B₉C₂H₁₁)₂]. Показаны только атомы H, принимающие участие в образовании связей. Штриховые линии — связи до центров π-систем катионов, участвующих во взаимодействии; стэкинговое π…π-взаимодействие (6) "offset"-типа параллельных Ph-колец катиона 2, штриховыми линиями показаны кратчайшие расстояния C(21)—C(23A) и C(23)—C(21A) 3,474 Å

500

Оцененные по данным РСА кратчайшие расстояния Ni…Ni в 1 равны 7,436 (\times 2) (анионы *1*) и 7,443 Å (\times 2) (анионы *2*), между анионами разных сортов *1* и *2* — 10,297 Å.

ЗАКЛЮЧЕНИЕ

Получено солеобразное комплексное соединение 1 и методом РСА определена его кристаллическая структура. Как и в случае комплекса [Ph₃GH]BPh₄·EtOH [5], в 1 отсутствует дифференциация между одинарными и двойной связями в центральных фрагментах катионов, отражая факт существования нескольких резонансных структур. Характерная особенность структуры — наличие слабых межионных взаимодействий с участием атомов H(N) гуанидиния N—H^{δ^+ ···· δ^-}H—B; C—H(C)···· π -взаимодействий между атомами H(C) кластерных анионов и делокализованными π -системами Ph-колец катионов; и стэкинговое π ··· π -взаимодействие Ph-колец катиона 2 друг с другом.

Авторы выражают благодарность Е.В. Пересыпкиной и А.В. Вировцу за данные РСА.

СПИСОК ЛИТЕРАТУРЫ

- Contemporary Boron Chemistry. The proceedings of the International Conference IMEBORON X, Durham, UK, 1999. / Ed. M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade. – Cambridge: Royal Society of Chemistry, 2000.
- Boron Chemistry at the Beginning of the 21-st Century. The proceedings of the International Conference IMEBORON XI, Moscow, RF, 2002. / Ed. Y.N. Bubnov. – Moscow: RF, 2003.
- 3. Юматов В.Д., Ильинчик Е.А., Волков В.В. // Успехи химии. 2003. 72, № 12. С. 1141 1166.
- 4. Кинг Р.Б. // Изв. АН. Сер. хим. 1993. № 8. С. 1353 1360.
- 5. Полянская Т.М., Ильинчик Е.А., Волков В.В. и др. // Журн. структур. химин. 2008. **49**, № 3. С. 512 521. Polyanskaya T.M., Il'inchik E.A., Volkov V.V. et al. // J. Struct. Chem. 2008. **49**, N 3. Р. 494 503.
- 6. Hawthorne M.F., Yong D.C., Andrewes T.D. et al. // J. Amer. Chem. Soc. 1968. 90, N 4. P. 879 896.
- Волков О.В. Синтез и исследование свойств аддуктов 7,8-дикарбо-нидо-ундекаборана(11) с производными пиридина и многоядерных комплексов кобальта(III), содержащих дикарболлидные и дикарбоканастидные лиганды. Дис. ... канд. хим. наук. Новосибирск: Институт неорганической химии СО РАН, 1997.
- 8. Altomare A., Burla M.C., Camalli M. et al. // J. Appl. Crystallogr. 1999. 32. P. 115 119.
- 9. Sheldrick G.M. SHELXL-97, release 97-2. University of Gottingen, Germany, 1998.
- 10. Cambridge Structural Database. Version 5.32, 2010. University of Cambridge, UK.
- 11. Hansen F.V., Hazell R.G., Hyatt C., Stucky G.D. // Acta Chem. Scand. 1973. 27, N 4. P. 1210 1218.
- 12. Полянская Т.М., Надолинный В.А., Волков В.В. и др. // Журн. структур. химии. 2006. 47, № 5. С. 905 916. Polyanskaya T.M., Nadolinnyi V.A., Volkov V.V. et al. // J. Struct. Chem. 2006. 47, N 5. Р. 894 895.
- 13. Полянская Т.М., Дроздова М.К., Волков В.В. // Журн. структур. химии. 2008. **49**, № 3. С. 579 584. Polyanskaya T.M., Drozdova M.K., Volkov V.V. // J. Struct. Chem. 2008. **49**, N 3. Р. 560 565.
- 14. Steiner T. // Angew. Chem. 2002. 41, N 1. P. 41 76.