УДК 533.6.011.55

# Аэродинамические производные конуса с углом полураствора 20° при сверхзвуковых скоростях

# Н.П. Адамов, А.М. Харитонов, Е.А. Часовников

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

### E-mail:khar@itam.nsc.ru

Работа посвящена экспериментальному исследованию стационарных и нестационарных аэродинамических характеристик кругового конуса в диапазоне чисел Маха 1,75÷7. Дано краткое описание экспериментального оборудования и методики определения аэродинамических характеристик. Получены суммарные аэродинамические характеристики модели при весовых испытаниях, а также аэродинамические производные момента тангажа при динамических испытаниях на установке свободных колебаний. Проведено сопоставление экспериментальных данных с расчетными.

Ключевые слова: конус, весовые испытания, свободные колебания, частота колебаний, декремент затухания, аэродинамические производные.

### Введение

Возвращаемые космические летательные аппараты (ВА) при полете в атмосфере должны обладать статической и динамической (колебательной) устойчивостью, что необходимо для обеспечения их безопасного движения. Динамическая устойчивость ВА определяется, прежде всего, их аэродинамическим демпфированием по углу тангажа, поэтому в течение длительного времени в различных аэродинамических центрах изучаются демпфирующие характеристики различных конфигураций моделей ВА [1–5]. Заслуживает внимания всеобъемлющий обзор [1] экспериментальных и численных исследований (всего — 68 работ), выполненных разными авторами по изучению демпфирующих характеристик затупленных тел при сверхзвуковых скоростях. Следует отметить, что характеристики аэродинамического демпфирования определяются, как правило, экспериментальными методами в аэродинамических трубах на моделях ВА при их вращательных колебаниях. Определение аэродинамического демпфирования ВА при сверх- и гиперзвуковых скоростях имеет свою специфику, так как структура обтекания, характеризуемая формой и расположением скачков уплотнения, может существенно зависеть от критериев подобия и от кинематических параметров движения (числа Маха, амплитуды и приведенной частоты колебаний и т.д.). Кроме того, измерения связаны со значительными трудностями, обусловленными малым аэродинамическим демпфированием, большим лобовым сопротивлением, малыми размерами моделей ВА и т.п., которые зачастую приводят к большим погрешностям. Для отработки методов измерения

© Адамов Н.П., Харитонов А.М., Часовников Е.А., 2014

демпфирующих характеристик ВА на этих режимах и повышения точности эксперимента весьма актуально получение и накопление данных для моделей простой формы, которые бы послужили базой для валидации экспериментальных и расчетных методов исследования. В качестве таких моделей могут рассматриваться круговые конусы, исследованию демпфирования тангажа которых при сверхзвуковом обтекании посвящено значительное число расчетных работ [1, 6–11]. Известны и экспериментальные работы [1, 3, 12]. Однако систематические сопоставления результатов различных экспериментов и расчетных методов по таким моделям в литературе практически отсутствуют.

Основная цель настоящей работы заключалась в получении экспериментальных данных для острого кругового конуса с углом полураствора 20°, а также в проведении сопоставления с имеющимися расчетными данными [6].

### 1. Экспериментальное оборудование и условия экспериментов

Эксперименты проводились в сверхзвуковой аэродинамической трубе периодического действия Т-313 ИТПМ СО РАН с размером рабочей части 0,6×0,6 м<sup>2</sup> [13].

Стационарные аэродинамические характеристики определялись с помощью четырехкомпонентных механических весов, измеряющих в скоростной системе координат силу лобового сопротивления  $X_a$ , подъемную силу  $Y_a$ , момент тангажа  $M_z$  и момент крена  $M_x$ . Модель устанавливалась в рабочей части трубы на специальной донной державке в саблевидную подвеску механических весов и крепилась на  $\alpha$ -механизме в трубном положении (с углом крена 180°). Штатный  $\alpha$ -механизм трубы T-313 обеспечивает возможность изменения угла атаки в пределах от -4 до  $+22^\circ$ . Обработка результатов измерений выполнялась по традиционной методике. Доверительные интервалы определения коэффициентов аэродинамических нагрузок составляют величины:

 $\pm 2\sigma(c_x) = \pm 0,0022, \pm 2\sigma(c_y) = \pm 0,0032, \pm 2\sigma(m_z) = \pm 0,0035$  при M = 1,75–4,  $\pm 2\sigma(c_x) = \pm 0,0018, \pm 2\sigma(c_y) = \pm 0,0043, \pm 2\sigma(m_z) = \pm 0,0115$  при M = 5–7.

Характеристики аэродинамического демпфирования модели были получены на установке свободных колебаний с подшипниками качения [5]. Общий вид установки с моделью и конструктивная схема представлены на рис. 1, 2.

Донная державка модели 1 (рис. 2) устанавливается в саблевидной подвеске  $\alpha$ -механизма трубы. Модель крепится на  $\alpha$ -механизме в трубном положении. Державка обеспечивает расположение модели в поле теневого прибора 2. На конце державки неподвижно закреплен узел колебаний 3, в который вмонтированы подшипники качения 4, обеспечивающие перемещения модели относительно оси вращения 5. Система фиксации и освобождения модели состоит из пневмоцилиндра, закрепленного на донной державке, и арретира. Шток пневмоцилиндра перемещает арретир в переднее положение и фиксирует модель. При выходе трубы на рабочий режим шток пневмоцилиндра переводится



в заднее положение и освобождает модель. После записи реализации шток пневмоцилиндра переводится в переднее положение и производится повторный пуск либо остановка трубы.

Определение угла тангажа модели в T-313 осуществлялось посредством обработки результатов съемки движения

Рис. 1. Общий вид установки свободных колебаний в Т-313. Направление потока справа налево.

модели скоростной цифровой видеокамерой через теневой прибор ИАБ-451. Частота съемки составляла 1000 Гц. Объектом испытаний являлся круговой заостренный конус с углом полураствора 20° (рис. 2). Конус собран из четырех частей: носика, переходного конуса, замыкающего конуса и задней крышки. Длина модели и диаметр миделевого сечения составляют: L = 0,225 м, D = 0,147 м. Задняя крышка выполнена в виде сферического сегмента радиуса R = 0,160 м. Основные геометрические параметры модели, используемые при расчете аэродинамических характеристик: характерная площадь  $S = 0,0171 \text{ м}^2$  (площадь миделевого сечения), характерная длина l = 0,2015 м (длина конической части модели). Ось вращения модели располагалась на расстоянии x<sub>T</sub> = 111 мм от носика конуса ( $\overline{x}_T = x_T / l = 0,55$ ,  $\overline{y}_T = y_T / l = 0$ ). Момент инерции конуса относительно оси вращения  $I_z = 4,19 \times 10^{-3} \text{ кг} \times \text{м}^2$  был вычислен по программе «SolidWorks». Испытания конуса проводились в диапазоне чисел Маха набегающего потока M = 1,75-7 и чисел Рейнольдса, рассчитанных по характерной длине модели,  $Re = (2 - 10) \times 10^6$ (табл.). Диапазон углов атаки при весовых испытаниях составлял  $\alpha = -4-22^\circ$ , диапазон начальных амплитуд свободных колебаний при динамических испытаниях —  $\Theta_0 = 1,5-8^\circ$ .



Рис. 2. Конструктивная схема установки свободных колебаний.

# Таблица

| № испы-<br>тания    | М    | Re×10 <sup>-6</sup> | Весовые испытания |                | Динамические испытания |                |                                                             |
|---------------------|------|---------------------|-------------------|----------------|------------------------|----------------|-------------------------------------------------------------|
|                     |      |                     | $c_y^{\alpha}$    | $m_z^{\alpha}$ | $\overline{\omega}$    | $m_z^{\alpha}$ | $m_z^{\overline{\omega}_z} + m_z^{\overline{\dot{\alpha}}}$ |
| Пониженные числа Re |      |                     |                   |                |                        |                |                                                             |
| la                  | 1,79 | 3,2                 | 1,602             | -0,317         | 0,057                  | -0,324         | -                                                           |
| 2a                  | 2,04 | 3,7                 | 1,625             | -0,308         | 0,045                  | -0,341         | -0,260                                                      |
| 3a                  | 2,28 | 3,3                 | 1,649             | -0,358         | 0,047                  | -0,369         | -0,206                                                      |
| 4a                  | 2,55 | 3,1                 | 1,715             | -0,376         | 0,039                  | -0,376         | -                                                           |
| 5a                  | 2,79 | 3,4                 | 1,721             | -0,399         | 0,037                  | -0,380         | -0,235                                                      |
| 6a                  | 3,04 | 4,3                 | 1,739             | -0,395         | 0,037                  | -0,385         | -0,260                                                      |
| 7a                  | 3,55 | 4,9                 | 1,803             | -0,390         | 0,037                  | -0,389         | -0,291                                                      |
| 8a                  | 4,04 | 6,3                 | 1,746             | -0,365         | 0,035                  | -0,383         | -0,281                                                      |
| Повышенные числа Re |      |                     |                   |                |                        |                |                                                             |
| 1b                  | 1,79 | 4,9                 | 1,604             | -0,317         | 0,059                  | -0,332         | -0,273                                                      |
| 2b                  | 2,04 | 5,6                 | 1,611             | -0,306         | 0,057                  | -0,334         | -0,217                                                      |
| 3b                  | 2,28 | 5,5                 | 1,657             | -0,354         | 0,054                  | -0,366         | -0,230                                                      |
| 4b                  | 2,55 | 5,6                 | 1,714             | -0,383         | 0,053                  | -0,378         | -                                                           |
| 5b                  | 2,79 | 6,3                 | 1,688             | -0,397         | 0,051                  | -0,371         | -0,251                                                      |
| 6b                  | 3,04 | 7,3                 | 1,720             | -0,396         | 0,050                  | -0,379         | -0,257                                                      |
| 7b                  | 3,55 | 8,3                 | 1,769             | -0,391         | 0,049                  | -0,386         | -0,277                                                      |
| 8b                  | 4,04 | 10,3                | 1,728             | -0,358         | 0,046                  | -0,379         | -0,267                                                      |
| 9                   | 5,14 | 1,8                 | 1,713             | -0,346         | -                      | -              | -                                                           |
| 10                  | 5,08 | 2,0                 | 1,709             | -0,344         | 0,015                  | -0,374         | -0,308                                                      |
| 11                  | 6,90 | 1,9                 | 1,763             | -0,326         | _                      | _              | _                                                           |

Аэродинамические производные

# 2. Методика градуировочных испытаний установки и определения угла тангажа модели

Для настройки установки свободных колебаний был создан динамический стенд, реализующий маятниковые колебания модели с грузом с регистрацией угла отклонения маятника от вертикали при помощи лазерной указки.

Главная цель испытаний на динамическом стенде заключалась в измерении уровня трения в подшипниковом узле. Для этого экспериментально замерялись огибающие амплитуд колебаний модели при различных нагрузках на подшипники (рис. 3) и определялся





*Рис.* 4. Изображение модели при динамических испытаниях в трубе. *а* — исходное изображение и *b* — обработанное изображение.

приведенный коэффициент трения подшипников качения  $f_*$ . Момент трения моделиро-

вался функцией  $M_{\rm Tp} = \left[-R f_* \frac{d}{2}\right] {\rm sgn}(\dot{g})$ , где R — реакция в подшипниках, d — диаметр цапфы подшипника, g — угол тангажа. Испытания показали, что приведенный коэффициент трения (среднее значение  $f_* = 0,0015$ ) соответствует паспортным данным применяемых подшипников —  $f_* = 0,001-0,002$ .

Как отмечалось в разделе 1, определение угла тангажа модели в Т-313 осуществлялось посредством обработки результатов съемки колебаний модели цифровой видеокамерой через теневой прибор ИАБ-451. Ниже кратко описывается методика обработки цифровых изображений и определения угла тангажа. На рис. 4*a* приведен пример видеокадра, полученный при колебаниях конуса в рабочей части трубы. Алгоритм обработки изображений был реализован в программной среде Matlab и заключается в следующем. Вначале обнаруживаются перепады яркости (границы объектов). Затем с использованием известного в теории обработки цифровых изображений преобразования Хафа [14] выделяются прямолинейные образующие конуса (рис. 4*b*). И, наконец, производится линейная аппроксимация прямолинейных образующих с помощью метода наименьших квадратов с определением угла наклона последних.

Обработка видеограмм статических испытаний при различных числах Маха и без потока показала, что зависимость углов наклона образующих конуса от трубного угла атаки  $\alpha_{tr}$  линейна. Однако измеренный угол раствора конуса  $2\Theta_{kvid}$  заметно отличается от

истинного  $2\Theta_{kist} = 40,125^{\circ}$ , что в наибольшей степени проявляется в потоке. Поэтому угол атаки конуса определялся по обеим образующим:  $\alpha_{vid} = (\vartheta_v + \vartheta_n)/2$ , где v — верхняя поверхность конуса, n нижняя поверхность конуса.

С целью частичной компенсации оптических искажений определялась градуировочная характеристика по прибору Теплера (без потока, рис. 5) в виде зависимости истинного угла атаки от измеренного. С учетом градуировочной характеристики при числах M = 2, 4, 6 были обработаны

Рис. 5. Градуировочная характеристика, определяемая с использованием прибора Теплера.





*Рис.* 6. Погрешности определения угла тангажа: систематические (*a*), случайные (*b*). *a* — M = 2 (*1*), 4 (2), 6 (3), V = 0 (4); *b* — v (*1*), *n* (2).

изображения конуса при весовых испытаниях и построены графики зависимостей погрешностей определения угла тангажа от истинного угла атаки (рис. 6*a*). Погрешности рассчитывались по формуле  $\Delta \alpha_{\rm vid} = \alpha_{\rm vid} - \alpha_{\rm ist}$ , где  $\alpha_{\rm vid}$  рассчитан с учетом градуировочной характеристики. Нетрудно видеть, что эти зависимости линейны, а погрешности пропорциональны углу атаки. Можно показать, что в этом случае указанные систематические погрешности не скажутся на точности определения декремента затухания и частоты колебаний, а следовательно, и на аэродинамических производных.

Исследовались также случайные погрешности определения угла тангажа. На рис. 6b представлены данные испытаний, полученные путем обработки пятидесяти кадров при наличии потока в рабочей части аэродинамической трубы. Видно, что доверительные интервалы определения угла тангажа при доверительной вероятности  $P = 0.95 (\pm 2\sigma)$  не превышают  $\pm 0.02^{\circ}$ .

Кроме рассмотренных выше погрешностей возникают динамические погрешности, обусловленные конечным временем экспозиции кадра видеокамерой, равным  $\Delta t = 0,00002$  с. Можно полагать, что максимальные динамические погрешности будут соизмеримы с угловым перемещением модели за время экспозиции при максимальных скоростях движения модели (вблизи нулевого угла атаки)  $\Delta v \approx 0,018^\circ$ . На огибающих амплитуд колебаний, где угловая скорость движения модели равна нулю, динамические погрешности будут пренебрежимо малыми.

### 3. Методика обработки результатов динамических испытаний

Уравнение движения модели на подшипниках качения в аэродинамической трубе имеет вид:

$$I_{z}\ddot{\mathcal{B}} + \left[ -(m_{z}^{\overline{\omega}_{z}} + m_{z}^{\overline{\alpha}})\frac{qSl^{2}}{V} \right] \dot{\mathcal{B}} + \left( -m_{z}^{\alpha}qSl \right) \mathcal{B} - M_{\mathrm{Tp}} = 0,$$

где  $m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}$  — комплекс аэродинамических производных демпфирования [15], V — скорость потока в рабочей части, q — скоростной напор,  $m_z^{\alpha}$  — производная коэффициента момента тангажа по углу атаки (аэродинамическая производная  $m_z^{\overline{\omega}_z}$  не учитывается ввиду ее малости).

Уравнение движения нелинейно, т.к. момент трения  $M_{\rm rp}$  нелинейно зависит от  $\hat{\mathcal{G}}$ . Однако его величина мала, что позволяет использовать для решения уравнения приближенные аналитические методы [16]. При этом хорошую точность обеспечивает решение первого приближения, которое получается достаточно простым. Это позволяет решать обратную задачу, т.е. по известному решению  $\mathcal{G}(t)$  находить неизвестные параметры уравнения. В рамках первого приближения решение уравнения имеет вид:

$$\mathcal{G} = \Theta \cos \omega_0 t$$

где  $\Theta$  — огибающая амплитуда,  $\omega_0 = \sqrt{-\frac{m_z^{\alpha}qSl}{I_z}}$  — частота собственных колебаний.

Изменение амплитуды  $\Theta$  описывается уравнением

$$d\Theta/dt = -n\Theta - k_{\rm TD}$$

где  $n = \frac{-(m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}})qSl^2}{2I_z V}$  — декремент аэродинамического демпфирования,  $k_{\rm TP} = \frac{Rdf_*}{\pi I_z \omega_0}$ .

Решение последнего уравнения описывается функцией [3]:

$$\Theta(t) = (\Theta_0 + \frac{k_{\rm TP}}{n})\exp(-nt) - \frac{k_{\rm TP}}{n}.$$
(1)

Сущность используемого в статье метода определения аэродинамических производных заключается в следующем. Реализация переходного процесса  $\mathcal{G}(t)$  разбивается на небольшие временные отрезки (N = 1-2 периода колебаний). Затем переходный процесс на каждом временном отрезке аппроксимируется решением уравнения движения линейного осциллятора с затуханием

$$\widehat{\vartheta} = \vartheta_0 + \Delta \vartheta \exp(-nt) \cos(\omega t + \varphi),$$

и определяются неизвестные параметры  $\mathcal{G}_0$ ,  $\Delta \mathcal{G}$ , *n*,  $\omega$ ,  $\varphi$  [5]. После этого рассчитываются огибающие амплитуды переходного процесса  $\Theta(t)$ . По этой методике обрабатывается весь переходный процесс (пример аппроксимации см. на рис. 7*a*). Полученные угловые скорости  $\omega$  осредняются, рассчитываются статические производные ( $\omega \approx \omega_0$ ):

$$m_z^{\alpha} = -\frac{\omega^2 I_z}{qSl}.$$
 (2)

Вращательные производные рассчитываются по формуле:

$$m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}} = -2I_z n \frac{V}{qSl^2}.$$
(3)

Декремент затухания определяется посредством аппроксимации методом наименьших квадратов огибающих амплитуд  $\Theta(t)$  зависимостью (1). Пример такой аппроксимации показан на рис. 7*b*.



Рис. 7. Переходный процесс по углу тангажа (*a*) и огибающие амплитуд (*b*) при M = 6, N = 2. 1 — эксперимент, 2 — аппроксимация.

Результаты многократных измерений (13 реализаций) при M = 4 показали, что среднеквадратические отклонения для аэродинамических производных равны:

$$\sigma(m_z^{\alpha}) = 0,003, \quad \sigma(m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}) = 0,01.$$

Доверительные интервалы (при нормальном законе распределения и доверительной вероятности P = 0.95) составляют соответственно:

$$\pm 2\sigma(m_z^{\alpha}) = \pm 0,006,$$
  
$$\pm 2\sigma(m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}) = \pm 0,02.$$

Относительные погрешности определения аэродинамических производных не превышают 2 % для  $m_z^{\alpha}$  и 7 % для  $m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}$ .

# 4. Обсуждение результатов испытаний

На рис. 8 приведены примеры теневых картин обтекания конуса при стационарных испытаниях. На рис. 9

представлены зависимости коэффициентов продольной силы, нормальной силы и момента тангажа от угла атаки, полученные при весовых испытаниях. Характеристики  $c_y(\alpha)$  и  $m_z(\alpha)$  близки к линейным. Однако значения коэффициентов при нулевом угле атаки отличны от нуля, что обусловлено, по-видимому, асимметричной структурой обтекания донной части модели. Обработка зависимостей  $c_y(\alpha)$  и  $m_z(\alpha)$  позволила определить аэродинамические производные, которые сведены в таблицу. На рис. 10 в качестве примеров приведены переходные процессы угла тангажа конуса по времени для двух режимов, полученные на установке свободных колебаний. Там же нанесены результаты аппроксимации огибающих амплитуд по описанной выше методике. В таблице приведены аэродинамические производные конуса и параметры подобия ( $\overline{\alpha} = \omega l/V$  приведенная частота колебаний,  $\omega$  — круговая частота колебаний). На рис. 11 представлены экспериментальные и расчетные аэродинамические характеристики в функции числа Маха. Расчетные аэродинамические производные были взяты из работы [6] и пересчитаны на центровку  $\overline{x}_T = 0,55$ . Сплошными линиями изображены результаты



*Рис.* 8. Теневые картины обтекания конуса. M = 2 (*a*), 6 (*b*).

расчета по линейной теории, штрихпунктирными — по ударной теории Ньютона. В настоящей работе были выполнены также расчеты стационарных характеристик конуса по программе Fluent (штриховые линии на рис. 11*a*, 11*b* и 11*d*). Решались трехмерные уравнения Навье–Стокса с привлечением модели турбулентности *k*-*w*SST. При этом решение строилось методом установления с использованием явной разностной схемы второго порядка точности аппроксимации по пространству для расчета параметров потока и первого порядка для расчета параметров турбулентности.

Анализ данных позволяет сделать следующие выводы. Число Re и приведенная частота колебаний  $\overline{\omega}$  не оказывают существенного влияния на аэродинамические производные. Экспериментальные и расчетные статические производные  $c_y^{\alpha}$  хорошо согласуются между собой (рис. 11*a*). Аэродинамические производные  $m_z^{\alpha}$ , полученные в весовом и динамическом экспериментах (рис. 11*b*), близки между собой (максимальные расхождения не превышают 6 %). Расчетные производные  $m_z^{\alpha}$  в диапазоне чисел M = 2–4 заметно отличаются от экспериментальных. Расчеты производных  $m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}$  по линейной теории удовлетворительно согласуются с экспериментом (рис. 11*c*). Расчет по ударной теории дает сильно заниженное демпфирование по сравнению с экспериментом (рис. 11*c*).



Рис. 9. Стационарные характеристики модели. Коэффициенты продольной силы (*a*), нормальной силы (*b*), моменты тангажа (*c*). Обозначения см. в табл.

Коэффициент продольной силы, вычисленный по программе Fluent, хорошо согласуется с экспериментом (рис. 11*d*).

Представляет интерес зависимость положения аэродинамического фокуса по углу атаки  $\overline{x}_{F_{\alpha}} = m_z^{\alpha} / c_y^{\alpha}$  [15] конуса от числа M, представленная на рис. 12. Расчеты по линейной и ударной теориям дают не зависящее от M значение  $\overline{x}_{F_{\alpha}} = -0,205$ . Расчетные величины фокуса по Fluent близки к этому значению. Положение фокуса в весовом эксперименте при M = 2–4 более заднее по сравнению с расчетным. По-видимому, смещение фокуса назад в эксперименте вызвано силовым воздействием потока на донную часть конуса, которое неадекватно моделируется расчетными методами.

Следует отметить, что при M ≤ 3 возбуждаются незатухающие колебания модели, имеющие на ряде режимов характер биений (см. рис. 10*a*). Причем амплитуда колебаний



 $a - M = 1,79 \text{ Re} = 4,9 \cdot 10^6; b - M = 4,05, \text{ Re} = 10,3 \cdot 10^6.$ 

резко возрастает с уменьшением числа Маха (на рис. 13 по оси ординат отложена максимальная амплитуда незатухающих колебаний). Очевидно, что незатухающие колебания принципиально не могут быть описаны при помощи линейной теории.

*Рис.* 11. Зависимость аэродинамических характеристик от числа Маха. *а* — производная c<sup>α</sup><sub>y</sub>, *b* — производная m<sup>α</sup><sub>z</sub>, *с* — комплекс производных m<sup>ū</sup><sub>z</sub> + m<sup>ā</sup><sub>z</sub>, *d* — коэффициент продольной силы при нулевом угле атаки, c<sub>x0</sub> — сопротивление при угле атаки α = 0. 1а и 1b — весовые испытания соответственно при пониженных и повышенных числах Re, 2a и 2b — динамические испытания соответственно при пониженных и повышенных числах Re (см. табл.); 3–5 — расчет.





Рис. 12. Зависимость положения аэродинамического фокуса от числа Маха. Обозначения см. на рис. 11.



числах Re — 2.

# Заключение

Получены суммарные аэродинамические характеристики острого конуса с углом полураствора 20° в диапазоне чисел M = 1,75–7.

Выявлено, что:

 – число Рейнольдса и приведенная частота колебаний не оказывают заметного влияния на аэродинамические характеристики;

– экспериментальные статические производные  $c_y^{\alpha}$  хорошо согласуются с расчетными;

– производные  $m_z^{\alpha}$ , полученные при статических испытаниях и на установке свободных колебаний, близки между собой;

– расчетные и экспериментальные производные  $m_z^{\alpha}$  и фокус по углу атаки  $\overline{x}_{F_{\alpha}}$  в диапазоне чисел M = 2–4 заметно различаются;

– расчет производных  $m_z^{\overline{\omega}_z} + m_z^{\overline{\alpha}}$  по линейной теории при M = 1,75–3,5 дает удовлетворительное согласование с экспериментом;

 – расчетное демпфирование тангажа по ударной теории Ньютона существенно ниже экспериментального;

 – результаты расчетов коэффициента продольной силы хорошо согласуются с экспериментальными данными.

Обнаружено, что при  $M \le 3$  возбуждаются нерегулярные незатухающие колебания, имеющие на ряде режимов характер биений. С уменьшением числа Маха происходит резкое возрастание амплитуды этих колебаний.

# Список литературы

 Kazemba C.D., Braun R.D., Clark L.G., Schoenenberger M. Survey of blunt body dynamic stability in supersonic flow // AIAA-2012-4509. P. 1–27.

2. Петров К.П. Аэродинамика тел простейших форм. М.: Факториал, 1998. 432 с.

- 3. Липницкий Ю.М., Красильников А.В., Покровский А.Н., Шманенков В.Н. Нестационарная аэродинамика баллистического полета. М.: Физматлит, 2003. 174 с.
- 4. Козловский В.А. Экспериментальное определение в аэродинамических трубах методом свободных колебаний характеристик демпфирования спускаемых в атмосфере планет аппаратов // Космонавтика и ракетостроение. 2005. Т. 38, № 1. С. 81–94.
- 5. Адамов Н.П., Пузырев Л.Н., Харитонов А.М., Часовников Е.А., Дядькин А.А., Крылов А.Н. Аэродинамические производные модели головного блока системы аварийного спасения при гиперзвуковых скоростях // Теплофизика и аэромеханика. 2013. Т. 20, № 6. С. 749–758.
- Tobak M., Wehrend W.R. Stability derivetives of cones at supersonic speeds // Technical Note № 3788, NASA AMES, 1956.
- 7. Полянский О.Ю. Обтекание тел вращения, колеблющихся в сверхзвуковом потоке газа // Тр. ЦАГИ. 1958. Вып. 726. 24 с.
- Теленин Г.Ф. Исследование обтекания колеблющегося конуса сверхзвуковым потоком. М.: Оборонгиз, 1959. 61 с.
- 9. Бачманова Н.С., Лапыгин В.И., Липницкий Ю.М. Исследование сверхзвукового обтекания круговых конусов на больших углах атаки // Изв. АН СССР. МЖГ. 1973. № 6. С. 79–84.
- Липницкий Ю.М., Резниченко Ю.Т., Сиренко В.Н. Исследование сверхзвукового нестационарного обтекания конических тел // Изв. АН СССР. МЖГ. 1983. № 2. С. 174–177.
- 11. Липницкий Ю.М., Мацюра Е.В., Покровский А.Н. Сверхзвуковое обтекание острого конуса, колеблющегося около нулевого угла атаки // Изв. РАН. МЖГ. 1998. № 6. С. 124–135.
- 12. Козловский В.А, Косенко А.П., Лагутин В.И., Липницкий Ю.М. Экспериментальные исследования распределения давления на поверхности конуса при его колебаниях в сверхзвуковом потоке. // Космонавтика и ракетостроение. 2010. Т. 60, № 3. С. 20–27.
- **13. Харитонов А.М.** Техника и методы аэрофизического эксперимента. Новосибирск: Изд-во НГТУ, 2011. 642 с.
- 14. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
- **15. Белоцерковский С.М., Скрипач Б.К., Табачников В.Г.** Крыло в нестационарном потоке газа. М.: Наука, 1971. 767 с.
- **16.** Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Физматгиз, 1958. 408 с.

Статья поступила в редакцию 25 июня 2014 г.