2015. Том 56. № 4 Июль C. 747 – 757

УДК 548.4:548.736.5:548.734.8

ОРИЕНТАЦИОННАЯ РАЗУПОРЯДОЧЕННОСТЬ СУЛЬФАТ-ИОНОВ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ $NH_4Al_{0.43}Fe_{0.57}(SO_4)_2 \cdot 12H_2O$

В.Х. Сабиров

Казахстанский инженерно-педагогический университет Дружбы народов, Шымкент, Республика Казахстан

E-mail: v sabirov@mail.ru

Статья поступила 30 апреля 2014 г.

С доработки — 14 ноября 2014 г.

Кристаллическая структура твердого раствора квасцов $NH_4AI_{0,43}Fe_{0,57}(SO_4)_2 \cdot 12H_2O$ (I) изучена в пр. гр. $Pa\overline{3}$ и ее максимальных подгруппах $R\overline{3}$, $P\overline{1}$ и P1. В центросимметричных пространственных группах сульфат-ионы занимают одну из двух взаимно противоположных ориентаций, а в триклинной группе P1 четыре из восьми тетраэдров имеют одну ориентацию. Генерацию второй оптической гармоники в кристалле I наблюдали при прохождении через него цуга чирпированных световых импульсов иттербиевого твердотельного лазера с диодной накачкой.

DOI: 10.15372/JSC20150413

Ключевые слова: квасцы, твердые растворы, запрещенные рентгеновские отражения, максимальные подгруппы, ориентационный беспорядок.

ВВЕДЕНИЕ

Кристаллы железоаммонийных квасцов являются парамагнетиками и обладают температурным магнитокалорическим эффектом [1]. Кристаллы твердых растворов квасцов, содержащие различные одновалентные или двухвалентные катионы, проявляют нелинейные оптические свойства: аномальное двупреломление [2, 3] и генерацию второй оптической гармоники [4]. В массиве рентгеновских отражений таких кристаллов присутствуют немногочисленные отражения, запрещенные в кубической пространственной группе Pa, в которой, как правило, кристаллизуются гомогенные квасцы [5].

Лазерные исследования на иттербиевом твердотельном лазере с диодной накачкой показали, что в монокристалле $NH_4Al_{0,43}Fe_{0,57}(SO_4)_2 \cdot 12H_2O$ (I) происходит генерация второй оптической гармоники ($\lambda_1 \approx 1059$ нм). С целью определения структурных беспорядков, ответственных за нелинейные свойства кристалла I, нами была изучена его кристаллическая структура в кубической пространственной группе Pa и ее максимальных подгруппах R, $P\overline{1}$ и P1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы $NH_4Al_{0,43}Fe_{0,57}(SO_4)_2 \cdot 12H_2O$ (I) были получены путем перемешивания алюмоаммонийных и железоаммонийных квасцов в слабокислом водном растворе серной кислоты (pH \approx 5,0) в мольном соотношении 2:3 с последующим упариванием полученного раствора при комнатной температуре. Кристаллы I октаэдрической формы бесцветные: a = b = c = 12,263(1) Å, V = 1844,3(4) Å³, Z = 4, $d_{\text{выч.}} = 1,69$ г/см³.

_

[©] Сабиров В.Х., 2015

Рентгеновский эксперимент монокристалла размером $0.3\times0.2\times0.2$ мм был проведен на дифрактометре Xcalibur, Ruby ($\lambda \text{Cu}K_{\alpha}$ -излучение, комнатная температура, $6.25 < \theta < 75.89^{\circ}$, $-15 \le h \le 15$, $-15 \le k \le 15$, $-15 \le l \le 15$, 37 700 отражений с $I \ge 2\sigma(\mathbf{I})$, графитовый монохроматор, ω -сканирование). В пространственной группе $Pa\overline{3}$ среди наблюденных отражений 255 являются запрещенными. Эмпирические поправки на поглощение, фактор Лоренца, а также поляризации введены по программе CrysAlisPro [6].

Расчеты проведены по программе SHELX-97 в полноматричном анизотропном приближении для всех неводородных атомов [7, 8]. Атомы H молекул воды локализованы из разностного синтеза Фурье и в пространственных группах $Pa\overline{3}$ и $R\overline{3}$ уточнены изотропно, в группе $P\overline{1}$ — по модели наездника, а в P1 — не уточнялись. Атомы H катиона NH_4^+ локализованы из разностных синтезов Фурье лишь в пространственной группе $Pa\overline{3}$, которые уточнялись моделью наездника. Для пространственной группы $P\overline{1}$ координаты атомов H этой группы рассчитаны по данным группы $Pa\overline{3}$.

В пространственных группах $R\overline{3}$, $P\overline{1}$ и P1 заселенности позиций атомов Fe и Al определены в присутствии ограничения $\sin\theta/\lambda \le 0,4$. Полученные значения заселенностей 0,57 (Fe) и 0,43 (Al) соответствуют результатам химического анализа. Окончательные уточнения структуры во всех пространственных группах проведены при этих значениях заселенностей. При уточнении структуры были использованы стандартные значения геометрических параметров SO_4 -тетраэдра. Анизотропные параметры смещения кристаллохимически эквивалентных в структуре атомов во всех группах уравнивались. Основные параметры уточнения кристаллической структуры I в различных пространственных группах приведены в табл. 1, координаты атомов и изотропные параметры смещения атомов — в табл. 2, важнейшие межатомные расстояния и валентные углы — в табл. 3.

Анализ сериальных погасаний рентгеновских отражений кристалла **I** показывает, что среди отражений кристалла **I** присутствуют слабые, но наблюдаемые отражения с нечетными индексами h, k и l (рис. 1, a). Наличие таких нечетных отражений указывает на потерю кристаллической структурой винтовых осей 2_1 . Запрещенные в кубической сингонии отражения с нечетными индексами h, k и l наблюдаются и среди зональных отражений (см. рис. 1, a) и свидетельствуют о потери плоскости скольжения a. В результате этих потерь метрика кристалла претерпевает t-трансформацию из пространственной группы $Pa\overline{3}$ в изотрансляционную тригональную максимальную подгруппу R.

Таблица 1 Параметры уточнения структуры I в пространственных группах $Pa\,\overline{3}$, $R\,\overline{3}$, $P\,\overline{1}\,$ и P1

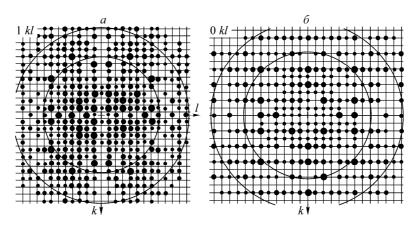
	Пространственная группа							
Параметр	$Pa\overline{3}$	$Pa\overline{3}$ $R\overline{3}$		P1				
Независимые отражения, $F_0 > 4\sigma(F_0)$	648	2259	7582	7576				
Уточняемый	65	258	624	865				
Число ограничений	25	126	512	843				
GOOF no F^2	1,162	1,138	1,198	1,107				
$R(\Sigma)$	0,0113	0,0211	0,0353	0,0355				
$R_{ m int}$	0,0811	0,0799	0,0724	0,0728				
$R_1 (I > 2\sigma(\mathbf{I}))$	0,0322	0,0424	0,043	0,0432				
$wR_2 (I > 2\sigma(\mathbf{I}))$	0,077	0,121	0,1268	0,1264				
R_1 (по всем отражениям)	0,0299	0,0479	0,0513	0,0515				
Δho_{max} / Δho_{min} , e^2/\mathring{A}^3	0,507 / -0,386	0,181 / -0,862	0,673 / -0,825	0,999 / -0,868				
μ , mm ⁻¹	6,961	6,402	7,185	7,073				
Флэка				0,51(6)				

Атом	Позиц	ия	х	y	Z	$U_{\scriptscriptstyle { m 9KB}}$	Атом	Позиі	ция	x	y	z	$U_{\scriptscriptstyle 9\mathrm{KB}}$
1	2	3	4	5	6	7	1	2	3	4	5	6	7
пр. гр. Ра $\overline{3}$													
M^{3+}	4(a)	- 3	0	0	0	3,3(6)		8(<i>c</i>)	3	2411(3)	2411(3)	2411(3)	49(2)
	24(<i>d</i>)	1	152(2)	-157(2)	1567(2)	16(1)	O(1)	24(d)		2655(3)	4205(3)	3126(3)	30(1)
$O_{w}(1)$ H(1) _{w1}	24(<i>d</i>)	1	22(5)	34(3)	201(4)	48(17)	O(2) $O(1A)$	8(c)	3	3778(6)	3778(6)	3778(6)	35(5)
$H(2)_{w1}$	24(<i>d</i>)	1	38(5)	-73(5)	182(4)	41(15)	O(2A)	24(d)	1	2127(12)		2932(14)	
$O_w(2)$	24(d)	1	459(3)	1392(2)	3006(2)	28(1)	N	4(b)	$\frac{1}{3}$	5000	5000	5000	20(2)
$H(1)_{w2}$	24(d)	1	4(3)	189(3)	289(5)	44(17)	H_1	8(c)	3	461	461	461	4(6)
$H(1)_{w2}$ $H(2)_{w2}$	24(d)	1	107(2)	163(4)	289(5)	46(17)	H_2	24(d)	1	460	550	508	5(4)
S	8(c)	3	3090(1)	3090(1)	3090(1)	12(1)	112	21(4)		100	330	300	3(1)
									ı				
3+	Lacal	<u>-</u>		l 0	I 6	пр. гр. <i>I</i>		10/4	١,	(00(6)	400(0)	26(4)	0(2)
M_1^{3+}	3(<i>a</i>)	3	0	0	0	4,0(3)	$H(2)_{2w}$	18(<i>f</i>)		699(6)	480(8)	-36(4)	8(3)
M_2^{3+}	9(<i>d</i>)	1	5000	5000	0	4,0(3)	$O(3)_{w}$	18(<i>f</i>)	1	4848(3)	4845(2)	1565(2)	16(1)
S(1)	18(<i>f</i>)	1	8091(1)	3090(1)	1909(1)	13,0(3)	$H(1)_{3w}$	18(<i>f</i>)	1	471(5)	533(3)	201(4)	3(2)
O(11)	18(<i>f</i>)	1	7413(4)	2414(4)	2583(4)	34(1)	$H(2)_{3w}$	18(<i>f</i>)	1	462(5)	426(3)	177(5)	3(2)
O(21)	18(<i>f</i>)	1	8131(4)	2669(4)	785(3)	25(1)	$O(4)_{w}$	8(<i>f</i>)	1	4842(2)	3434(2)	-152(3)	16(1)
O(31)	18(<i>f</i>)	1	7671(4)	4217(3)	1868(4)	25(1)	$H(1)_{4w}$	18(<i>f</i>)	1	429(3)	313(4)	-38(5)	3(2)
O(41)	18(<i>f</i>)	1	9208(3)	3127(3)	2339(4)	25(1)	$H(2)_{4w}$	18(<i>f</i>)	1	535(4)	300(5)	-19(7)	6(2)
O(11A)	18(f)	1	8915(13)	3771(14)	1353(15)	34(2)	$O(5)_{\rm w}$	18(f)	1	4543(3)	6392(3)	3010(3)	27(1)
O(21A)	18(f)	1	7975(13)	2202(12)	1131(13)	16(2)	$H(1)_{5w}$	18(f)	1	391(2)	660(5)	301(6)	4(2)
O(31A)		1	8811(15)	2949(14)	2852(12)	22(2)	$H(2)_{5w}$	18(f)	1	494(4)	693(4)	294(6)	4(2)
O(41A)		1	7192(13)	3854(14)	2029(14)	21(2)	$O(6)_{w}$	18(f)	1	8008(3)	456(3)	3610(3)	28(1)
S(2)	6(c) 6(c)	3	3091(1)	3091(1)	3091(1) 2412(4)	12(1)	$H(1)_{6w}$	18(f)	1	797(5) 791(6)	107(2)	335(5)	3(1)
O(12) O(22)	18(f)	1	2412(4) 2647(4)	2412(4) 4201(3)	3122(4)	49(2) 41(1)	$H(2)_{6w}$	18(<i>f</i>) 18(<i>f</i>)	1	1391(3)	2(4) 3004(3)	311(4) 456(3)	5(2) 27(1)
O(22) O(12A)	6(<i>c</i>)	3	3778(3)	3778(3)	3778(3)	12(1)	$O(7)_{w}$ $H(1)_{7w}$	18(<i>f</i>)	1	160(5)	286(6)	107(2)	4(2)
O(12A) $O(22A)$	18(<i>f</i>)	1	2064(15)	3670(1)	2910(1)	12(1)	$H(2)_{7w}$	18(<i>f</i>)	1	189(4)	287(5)	4(4)	3(2)
$O_w(1)$	18(<i>f</i>)	1	-155(2)	1565(2)	151(3)	16(1)	$O(8)_{w}$	18(<i>f</i>)	1	5458(3)	1393(3)	995(3)	28(1)
$H(1)_{1w}$	18(<i>f</i>)	1	34(4)	199(5)	32(6)	6(2)	$H(1)_{8w}$	18(<i>f</i>)	1	604(3)	160(5)	226(6)	4(2)
$H(2)_{1w}$	18(<i>f</i>)	1	-72(4)	178(6)	43(7)	7(3)	$H(2)_{8w}$	18(<i>f</i>)	1	506(4)	194(4)	208(5)	3(2)
$O_{\rm w}(2)$	18(<i>f</i>)	1	6565(2)	4847(3)	159(2)	16(1)	N(1)	3(<i>b</i>)	$\frac{1}{3}$	0	0	5000	20(1)
$H(1)_{2w}$	18(<i>f</i>)	1	683(5)	458(5)	72(3)	3(1)	N(2)	3(<i>b</i>)	- 3	5000	5000	5000	20(2)
()2W	1 -071	,	()		. (-)	пр. гр. І	_	1 - (-)				1	
M_1^{3+}	1(a)	1	0	0	0	3,7(2)	O(45A)	2(<i>i</i>)	1	2915(15)	8700(1)	2880(1)	28(2)
$O(1)_{w}$	2(<i>i</i>)	1	-1562(2)	-151(3)	155(3)	16(1)	S(6)	2(<i>i</i>)	1	3089(1)	1910(1)	8090(10)	
$H(1)_{1w}$	2(<i>i</i>)	1	-201	-177	-37	4(2)	O(16)	2(i)	1	2415(4)	2587(4)	7414(4)	
$H(2)_{1w}$	2(<i>i</i>)	1	-184	-25	64	2(2)	O(26)	2(<i>i</i>)	1	2653(4)	794(4)	8126(4)	31(1)
$O(2)_{\rm w}$	2(<i>i</i>)	1	-157(2)	1567(2)	153(3)	16(1)	O(36)	2(<i>i</i>)	1	209(4)	1870(4)	7657(4)	30(1)
$H(1)_{2w}$	2(<i>i</i>)	1	-73	1890	40	4(2)	O(46)	2(<i>i</i>)	1	3128(4)	2342(4)	9206(4)	30(1)
$H(2)_{2w}$	2(<i>i</i>)	1	37	201	34	7(3)	O(16A)	2(<i>i</i>)	1	3764(17)		8907(16)	
$O(3)_{w}$	2(<i>i</i>)	1	152(3)	-156(3)	1567(2)	16(1)	O(26A)	2(<i>i</i>)	1	2101(15)	1280(10)	7900(10)	28(2)
$H(1)_{3w}$	2(<i>i</i>)	1	21	37	200	6(2)	O(36A)	2(<i>i</i>)	1	3755(19)	2066(19)	7110(15)	22(2)
$H(2)_{3w}$	2(<i>i</i>)	1	43	-74	191	5(2)	O(46A)	2(<i>i</i>)	1	2900(1)	2893(15)		
M_2^{3+}	2(<i>i</i>)	1	5000	5000	0	3,7(2)	$O(13)_{w}$	2(<i>i</i>)	1	6391(3)	3008(3)	4541(3)	27(1)
$O(4)_{w}$	2(<i>i</i>)	1	6563(2)	4846(3)	159(3)	16(1)	$H(1)_{13w}$	2(<i>i</i>)	1	667	293	393	5(2)

Продолжение табл. 2 1 2 3 4 5 6 7 1 2 3 4 5 6 7 $H(1)_{4w}$ 2(*i*) 1 695 467 -38 6(2) $H(2)_{13w}$ 2(*i*) 1 694 287 495 5(2) $O(14)_{w}$ $H(2)_{4w}$ 2(i)1 698 475 65 6(3) 2(*i*) 1 3006(3) 4541(3) 6391(3) 27(1) $H(14)_{w}$ 2(*i*) 4843(3) 3433(2) -154(3)284 390 $O(5)_{\rm w}$ 1 16(1) 2(*i*) 1 659 5(2) 2(*i*) 492 $H(1)_{5w}$ 1 424 308 -414(2) $H(24)_{w}$ 2(*i*) 1 287 688 4(2) $O(15)_w$ 2(i)300 4539(3) 6389(3) 3008(3) $H(2)_{5w}$ 1 537 -275(2) 2(i)1 28(1) $H(1)_{15w}$ $O(6)_{\rm w}$ 2(*i*) 1 4849(3) 4843(3) 1565(2) 16(1) 2(*i*) 396 659 294 3(2) 1 $H(1)_{6w}$ 2(*i*) 1 470 535 196 3(2) $H(2)_{15w}$ 2(i)1 486 680 295 4(3) $H(2)_{6w}$ 2(*i*) 1 461 428 184 4(2) $O(16)_{w}$ 2(*i*) 3612(3) 8005(3) 457(4) 27(1) 1 Fe3 1(*a*) 1 5000 5000 319 790 0 3,7(2) $H(1)_{16w}$ 2(i)1 12 4(2) $H(2)_{16w}$ 4842(3) 801 $O(7)_{\rm w}$ 2(i)1 3434(2) -156(3)16(1) 2(i)1 343 98 3(2) 3008(3) $H(1)_{7w}$ 2(*i*) 3107 -3864215 5(2) $O(17)_{w}$ 460(3) 1391(3) 27(1) 1 2(i)1 $H(1)_{17w}$ $H(2)_{7w}$ 2(i)1 2961 -31536 5(2) 2(i)1 285 105 176 5(2) 2(*i*) 4844(3) 4848(3) 283 860 $O(8)_{w}$ 1 1565(2) 16(1) $H(2)_{17w}$ 2(i)1 1 8(3) $H(1)_{8w}$ 2(i)1 426 180 464 2(2) $O(18)_{w}$ 2(*i*) 1 5458(3) 1389(3) 1992(3) 28(1) 201 $H(1)_{18w}$ $H(2)_{8w}$ 2(i)1 534 469 4(2) 2(*i*) 1 603 169 214 32(2) $O(9)_{\rm w}$ 2(*i*) 5152(3) -157(3)3436(2) $H(2)_{18w}$ 505 16(1) 2(i)185 210 4(2) 1 1 $O(19)_{w}$ $H(1)_{9w}$ 2(i)1 539 -70312 2(2)2(*i*) 1 1391(3) 3005(3) 459(3) 27(1) 528 32 302 $H(1)_{19w}$ 175 290 105 $H(2)_{9w}$ 2(i)1 8(3) 2(i)1 5(2) 5000 5000 190 Fe(4) 2(i)1 0 3,7(2) $H(2)_{19w}$ 2(i)1 286 6 5(2)4848(3) $O(10)_{w}$ 2(i)1 1564(2) 4847(3) 16(1) $O(20)_{w}$ 2(i)1 1991(3) 5453(4) 1391(3) 28(1) $H(1)_{10w}$ 2(*i*) 204 479 534 $H(1)_{20w}$ 213 588 1 4(2) 2(*i*) 1 160 2(2) $H(2)_{10w}$ 2(*i*) 1 181 464 435 2(2) $H(2)_{w}$ 2(*i*) 1 214 491 187 7(3) $O(21)_w$ $O(11)_{w}$ 2(*i*) 1 154(3) 6566(2) 4847(3) 16(1) 2(*i*) 453(4) 3612(3) 8007(3) 28(1) 1 2(*i*) $H(1)_{11w}$ 1 65 6800 464 2(2) $H(1)_{21w}$ 2(*i*) 1 93 344 793 3(2) 2(*i*) 7047 471 $H(2)_{21w}$ 307 790 $H(2)_{11w}$ 1 -354(2) 2(i)1 6 6(2)2(*i*) 4845(3) 5459(3) $O(12)_{w}$ -151(3)3435(2) 16(1) $O(22)_{w}$ 2(*i*) 1391(3) 1995(3) 27(1) 1 1 $H(1)_{22w}$ $H(1)_{12w}$ 2(i)1 -44434 319 2(1) 2(i)1 174 218 608 3(2)2(*i*) -28543 300 $H(2)_{22w}$ 196 207 510 $H(2)_{12w}$ 1 6(2)2(i)1 5(2) 2(i)8090(1) 3090(1) 1909(1) 8010(3) S(1)1 12(1) $O(23)_{w}$ 2(i)1 456(4) 3611(3) 28(1)O(11) 2407(4) $H(1)_{24w}$ 2(i)1 7411(4) 2581(4) 42(1) 2(*i*) 1 785 96 343 4(3) O(21)2(*i*) 1 8127(4) 2653(4) 796(4) 31(1) $H(2)_{24w}$ 2(i)794 9 323 4(2) 1 O(24_w) O(31)2(i)1 9202(3) 3125(4) 2347(4) 31(1) 2(*i*) 1 458(3) 1389(3) 3003(3) 27(1) O(41)2(*i*) 7659(4) 4208(3) 1872(4) $H(1)_{24\mathrm{w}}$ 2(*i*) 195 289 1 31(1) 1 4 4(2) O(11A) 2(i)1 8901(16) 3780(17) 1354(19) 27(2) $H(24)_{w}$ 2(i)1 105 165 292 4(2) O(21A) 7918(19) 2096(15) $\overline{1}$ 5000 2(i)127(2) 23(2) N(1)1(a) 5000 5000 20(2) O(31A) 2(*i*) 8700(20) 2910(20) 2919(15) 461 29(2) H(11)2(i)461 461 5 1 1 O(41A) 2(i)1 7118(15) 3760(20) 207(20) 23(2) H(21)2(i)1 460 550 508 5 S(4) 2(*i*) 1 3090(1) 3090(1) 3089(1) 12(1) H(31)2(*i*) 1 450 492 540 5 540 5 O(14)2(*i*) 2411(4) 2412(4) 2414(4) H(41)492 450 1 42(1) 2(*i*) 1 O(24)4207(3) 3127(4) 2658(4) $\overline{1}$ 5000 20(2) 2(i)1 29(1) N(2)1(a) 0 0 2645(4) _39 O(34)2(*i*) 1 3123(4) 4202(4) 30(1) H(12)2(*i*) 1 461 -395 5 O(44)2(i)1 2654(4) 4205(3) 3125(4) 30(1) H(22)2(i)1 460 50 8 O(14A) 2(i)3819(16) 3732(17) 3782(17) 29(2) H(32)2(*i*) 1 450 -840 5 1 O(24A) 2(i)1 2910(1) 2104(16) 3740(1) 28(2) H(33)2(*i*) 1 492 40 -515 O(34A) 2(i)1 2109(15) 3740(1) 2920(19) 23(2) N(3)2(*i*) 1 0 5000 0 19(1) O(44A) 2(*i*) 3770(19) 2930(19) 2119(15) 22(2) 2(*i*) 39 539 39 5 H(13)1 1 5 S(5)2(i)1 1909(1) 8090(1) 3089(1) 12(1) H(23)2(*i*) 1 40 450 -8 O(15)2(*i*) 1 2585(4) 7414(4) 2408(4) 42(1) H(33)2(*i*) 1 50 508 -40 5 3123(4) 5 O(25)2(i)2351(4) 9202(3) 30(1) 50 1 H(43)2(*i*) 1 8 460 20(1) O(35)2(*i*) 792(4) 8128(4) 2658(4) 31(1) N(4)1(*a*) 0 0 0 50 1 O(45)2(*i*) 1 1873(4) 7657(4) 4210(4) 30(1) H(14)2(*i*) 1 39 39 539 5

								П	p	одоля	кение	табл	ı. 2
1	2	3	4	5	6	7	1	2	3	4	5	6	7
O(15A)	2(<i>i</i>)	1	1438(18)	8970(15)	3752(17)	29(2)	H(24)	2(<i>i</i>)	1	40	-50	492	5
O(25A)	2(<i>i</i>)	1	1239(19)	7917(19)	2126(15)	23(2)	H(34)	2(<i>i</i>)	1	50	8	460	5
O(35A)	2(<i>i</i>)	1	2054(19)	7115(15)	3750(20)	22(2)	H(44)	2(<i>i</i>)	1	8	-40	550	5
						пр. гр.	P1						
M_1^{3+}	1	1	0(4)	6(4)	15(5)	3,3(3)				8070(11)	2428(13)	4179(9)	30(2)
M_2^{3+}	1		5000(4)	2(4)	5016(5)	3,4(3)	O(2)			7549(12)	844(9)	3092(11)	28(1)
M_3^{3+}			-6(4)	5008(4)	5018(5)	3,3(3)	O(3)			9184(9)		2647(14)	
M_4^{3+}			5004(4)	5005(4)	18(5)	3,3(3)	O(4)			. ,	2471(11)	. , ,	` ′
$O(1)_{\rm w}$			-1557(10)	-152(11)	-141(10)	16(1)	S(5)			1905(3)	8090(3)	. , ,	` ′
$H(1)_{1w}$			-188	-38	-69	5	O(1)			` '	7302(10)		
$H(2)_{1w}$			-194	-31	28	5	O(2)				7733(11)		
$O(2)_{\rm w}$			1573(10)	154(11)	174(10)	158(10)	O(3)				8089(13)		
$H(1)_{2w}$			196	392	80	5	O(4)			` '	` '	` ′	
$H(2)_{2w}$			201	27	−33	5	O(15A)			1250(20)		6230(20)	
O_{3w}			166(10)	-1567(10)	165(11)	15(1)	O(25A)				7119(19)		
$H(1)_{3w}$			766	-1307(10) -199	33	5	O(25A)				7940(30)		
$H(2)_{3w}$			-34	-199 -202	29	5	O(35A)			2918(18)		7130(30)	
			-34 -150(10)	-202 1568(10)	-143(11)		S(6)			6905(3)	6916(3)	3105(3)	
$O(4)_{w}$			-130(10) -75	178	-143(11) -37	15(1)	O(16)				7453(11)		
$H(1)_{4w}$			37	202	-37 -24	5 5	O(16)			5838(9)	6893(12)	` ′	
$H(2)_{4w}$			-155(11)	150(10)	-24 1584(10)		O(26) $O(36)$				5793(9)		
$O(5)_{\rm w}$			-133(11) -45	73	183	15(1)							
$H(1)_{5w}$				-36	205	5	O(46)			1904(3)	7628(13)		
$H(2)_{5w}$			-26			5	S(7)				6909(3)		
$O(6)_{w}$			152(11)	-158(10)	-1545(10)		O(17)			2278(13)		1886(12)	
$H(1)_{6w}$			24	33	-200	5	O(27)			821(9)		2438(12)	
$H(2)_{6w}$			36	-75	-184	5	O(37)				7283(13)		30(2)
$O(7)_{w}$			6575(10)	130(11)	4871(10)	15(1)	O(47)				7479(10)		
$H(1)_{7w}$			705	26	538	5	S(8)			3089(3)	1911(3) 829(9)		
$H(2)_{7w}$			685	26	433	5	O(18)			2570(12)	` '	1889(12)	
$O(8)_{\rm w}$			3450(10)	-171(11)	5177(10)	15(1)	O(28)				2313(14)		32(2)
$H(1)_{8w}$			317	-32	567	5	O(38)			4229(8)		2269(12)	
$H(2)_{8w}$			305	-15	470	5	O(48)				2469(15)		
$O(9)_{w}$			4862(11)	154(10)	3447(10)	15(1)	$O(25)_{w}$				4525(12)		_
$H(1)_{9w}$			463	72	309	5	$H(1)_{25w}$			789	392	165	5
$H(2)_{9w}$			484	-34	309	5	$H(2)_{25w}$			802	515	188	5
$O(10)_{w}$			5171(11)	-159(10)	6580(10)	15(1)	$O(26)_{w}$				3012(12)		
$H(1)_{10w}$			533	49	700	5	$H(1)_{26w}$			188	287	981	5
$H(2)_{10w}$			538	-74	694	5	$H(2)_{26w}$			132	283	901	5
$O(11)_{w}$			5148(10)	-1547(10)	4865(11)	15(1)	$O(27)_{w}$				6994(12)		27(2)
$H(1)_{11w}$			556	-184	468	5	$H(1)_{27w}$			835	705	108	5
$H(2)_{11w}$			456	-207	474	5	$H(2)_{27w}$			803	692	-17	5
$O(12)_{w}$			4837(10)	1583(10)	5168(11)	15(1)	$O(28)_{w}$			460(12)		2015(12)	
$H(1)_{12w}$			433	180	541	5	$H(1)_{28w}$			5	302	215	5
$H(2)_{12w}$			539	192	536	5	$H(2)_{28w}$			103	335	205	5
$O(13)_{w}$			-1566(10)	5154(11)	4881(10)	15(1)	$O(29)_{w}$				5440(12)		
$H(1)_{13w}$			-203	531	543	5	$H(1)_{29w}$			213	510	813	5
$H(2)_{13w}$			-193	525	428	5	$H(2)_{29w}$			215	598	835	5
$O(14)_{w}$			1561(10)	4846(11)	5192(10)	15(1)	$O(30)_{\rm w}$				6384(12)		
$H(1)_{14w}$		ı	194	465	465	5	$H(1)_{30w}$			6	693	792	5

Продолжение табл. 2 1 2 3 4 5 6 7 1 2 3 4 5 6 7 $H(2)_{14w}$ 197 471 571 5 $H(2)_{30w}$ -91 657 791 5 $O(15)_{w}$ -159(10)3425(10) 4873(11) 15(1) $O(31)_{w}$ 6395(11) 2002(12) 491(12) 27(2)-715 $H(1)_{15w}$ 313 457 5 $H(1)_{31w}$ 672 211 101 $H(2)_{15w}$ 39 300 473 5 $H(2)_{31w}$ 691 224 2 5 153(10) 6560(10) 5178(11) 7029(13) 9542(13) 1421(12) 31(4) $O(16)_{w}$ 15(1) O_{32w} $H(1)_{16w}$ 71 681 543 5 $H(1)_{32w}$ 722 897 168 5 $H(2)_{16w}$ -37692 517 5 $H(2)_{32w}$ 729 995 215 5 $O(17)_{w}$ -132(11)4839(10) 6579(10) 15(1) 3610(11) 8015(12) 9571(12) 27(2) O_{33w} H(1)33900 5 $H(1)_{17w}$ -27531 695 5 335 781 $H(2)_{17w}$ -375 785 991 5 434 671 $H(2)_{33w}$ 311 166(11) 5150(10) 3448(10) 15(1) 4514(12) 8595(11) 2027(12) 27(3) $O(18)_{w}$ $O(34)_{w}$ $H(1)_{18w}$ $H(1)_{34w}$ 29 467 305 5 496 803 215 5 43 576 318 5 393 834 208 5 $H(2)_{18w}$ $H(2)_{34w}$ $O(19)_{w}$ 5152(10) 6587(10) -148(11)15(1) $O(35)_{w}$ 3036(11) 460(11) 8629(12) 24(3) $H(1)_{35w}$ $H(1)_{19w}$ 453 702 -2325 290 108 832 5 5 581 686 -355 831 312 4 $H(2)_{19w}$ $H(2)_{35w}$ $O(20)_{w}$ 4835(10) 3451(10) 164(11) 15(1) $O(36)_{w}$ 5425(11) 3620(11) 3026(11) 23(3) 424 309 25 507 5 5 315 281 $H(1)_{20w}$ $H(1)_{36w}$ 5 5 $H(2)_{20w}$ 537 308 32 $H(2)_{36w}$ 604 328 282 $O(21)_{w}$ 3428(10) 5141(11) 161(10) 15(1) $O(37)_{w}$ 361(1) 699(1) 458(1) 27(1) $H(1)_{21w}$ 315 534 75 321 710 493 5 $H(1)_{37w}$ 5 $H(2)_{21w}$ 292 516 -39 5 $H(2)_{37w}$ 319 714 391 5 $O(22)_{w}$ 6557(10) 4836(11) -145(10)15(1) 3012(12) 4523(13) 3629(12) 28(1) $O(38)_{w}$ $H(1)_{22w}$ 682 460 -68 5 $H(1)_{38w}$ 296 402 344 5 703 469 39 5 $H(2)_{38w}$ 270 496 313 5 $H(2)_{22w}$ 5152(11) 5146(10) 1578(10) 15(2) 4496(13) 6406(12) 7017(13) 32(4) $O(23)_{w}$ $O(39)_{w}$ $H(1)_{23w}$ 535 573 188 5 $H(1)_{39w}$ 389 672 705 5 529 456 198 5 $H(2)_{39w}$ 496 693 711 5 $H(2)_{23w}$ 4830(10) -1554(10)15(2) 6998(12) 5441(12) 6414(12) 28(1) $O(24)_{w}$ 4851(11) $O(40)_{w}$ $H(1)_{24w}$ $H(1)_{40w}$ 464 420 -1875 704 497 689 5 -1975 $H(2)_{24w}$ 469 537 5 $H(2)_{40w}$ 724 602 677 S(1)6907(3) 8092(3) 8107(3) 13(1) $O(41)_{w}$ 6401(11) 3000(12) 5501(12) 27(1) 7529(11) O(11)7338(10) 7453(12) 19(1) $H(1)_{41w}$ 297 5 666 607 O(21)6864(14) 7640(13) 9224(10) 17(1) $H(2)_{41w}$ 698 278 504 5 $O_{42\mathrm{w}}$ O(3)5823(10) 8068(12) 7583(13) 16(1) 8594(12) 8016(12) 5472(13) 27(1) O(4)7283(12) 9226(10) 8140(14) 18(1) 800 783 506 5 $H(1)_{42w}$ O(1A) 664(2) 9085(17) 871(2) 18(1) $H(2)_{42w}$ 830 791 612 5 O(2A) 702(3) 716(2) 882(2) 15(1) $O(43)_{w}$ 1379(12) 2011(12) 4561(13) 27(1) 7905(17) 870(2) 495 O(3A)789(3) 17(1) $H(1)_{43w}$ 171 211 5 793(3) 404 5 O(4A) 624(3) 715(2) 15(1) $H(2)_{43w}$ 158 178 3086(3) 2001(12) -484(12) 3629(12) 27(1) S(2)3096(3) 6925(3) 12(1) $O(44)_{w}$ $H(1)_{44w}$ O(12)2625(14) 4206(10) 6895(14) 17(1) 205 -112337 5 $H(2)_{44w}$ O(22)4241(10) 3143(14) 7277(12) 204 13 320 5 17(1) O(32)3171(12) 2756(11) 5758(9) 16(1) $O(45)_{w}$ -466(12) 8596(12) 3028(12) 28(1) O(42)2463(11) 2442(11) 7690(11) 18(1) $H(1)_{45w}$ -106827 284 5 7080(30) 5 O(12A) 2141(19) 3800(20) 825 304 15(1) 16 $H(2)_{45w}$ O(22A) 3750(20) 2940(30) 7896(19) 16(1) $O(46)_{w}$ 446(12) 1378(12) 7015(12) 28(1) $H(1)_{46w}$ O(32A) 2900(30) 2099(18) 6310(30) 16(1) 83 160 711 5 5 3750(20) 3840(20) 185 714 O(42A) 6270(20) 17(1) $H(2)_{46w}$ -8 8018(12) 434(12) 6411(12) 27(1) S(3)8084(3) 3089(3) 8106(3) 12(1) $O(47)_{w}$ 798 O(13)7417(11) | 2299(10) | 7530(11) | 19(1) | H(1)_{47w} _9 682


									(Оконч	нание	табл	ı. 2
1	2	3	4	5	6	7	1	2	3	4	5	6	7
O(23)			9238(10)	3174(13)	7761(12)	17(1)	H(2) _{47w}			779	98	671	5
O(33)			8059(12)	2591(13)	9193(10)	17(1)	$O(48)_{\rm w}$			5432(11)	1381(12)	8037(12)	27(3)
O(43)			7592(13)	4187(10)	8134(14)	17(1)	$H(1)_{48w}$			498	199	782	5
O(13A)			8810(20)	3660(20)	8860(20)	17(1)	$H(2)_{48w}$			606	162	787	5
O(23A)			7130(20)	3780(30)	7980(30)	15(1)	N(1)			0(2)	5050(20)	20(20)	20(2)
O(33A)			7950(30)	2130(20)	8800(30)	15(1)	N(2)			5010(20)	0(20)	-30(20)	20(2)
O(43A)			8800(20)	2940(30)	7170(20)	15(1)	N(3)			5010(20)	5010(20)	4980(20)	19(2)
S(4)			8085(3)	1910(3)	3104(3)	12(1)	N(4)			0(2)	40(20)	4980(20)	20(2)

 $\ \, \text{ T а блица} \ \, 3 \\ \, \textit{Важнейшие расстояния d (Å), углы } \omega \text{ (град.) } \textit{и заселенности позиций р в структуре I }$

П	Пространственная группа								
Параметр	$Pa\overline{3}$	$R\overline{3}$	$P\overline{1}$	P1					
$d(M^{3+}-0)$	1,9399(14)	1,936(2)—1,939(2)	1,934(2)—1,940(3)	1,920(7)—1,957(7)					
$\omega(O_w-M-O'_w)$	89,31(6)	1,938(cp.) 89,3(1); 89,33(10)	1,938(cp.) 89,16(12)—89,35(12)	1,938(cp.) 88,7(3)—89,9(3)					
	_	Геометрия сульфатнь	іх групп	_					
d(S-O(1))	1,439(4)	1,438(3); 1,455(6)	1,436(4)—1,442(4)	1,446; 1,440(cp.)**					
$d(S-O(2))^*$	1,4686(19)	1,468(3)—1,471(3)	1,464(3)—1,471(3)	1,473; 1,461(cp.)**					
d(S-O(1A))	1,34(3)	1,458(11); 1,459(6)	1,454(11)—461(11)	1,455 (cp.)					
d(S-O(2A))	1,455(11)	1,452(10)—1,464(10)	1,448(11)—1,469(11)	1,456 (cp.)					
$\omega(O(1)-S-O(1A))$	180	180; 169,7(9)	163,3(10); 164,1(11)	156,9(9); 169,4(9)					
			171,9(11); 176,1(10)	175,7(9); 176,8(10)					
d(NO(1A))	2,721(4)	2,636(4)	2,608—2,708	2,626—2,769					
$d(NO_w)$	3,034(4)	3,031—3,037(3)	3,028—3,035	2,962—3,134					
p	0,866(8)	0,871(4); 0,860(7)	0,873(4); 0,876(4)	0,791(6); 0,796(6)					
			0,869(4); 0,874(4)	0,796(6); 0,829(6)					

^{*} В пр. гр. $R\overline{3}$, $P\overline{1}$ и P1 символом O(2) обозначены атомы кислорода SO_4 -группы, которые в пр. гр. $Pa\overline{3}$ находятся в общей позиции.

^{**} Атомы О относятся к упорядоченным сульфатным группам.

 $Puc.\ 1.\$ Фрагменты $0kl\ (a)$ и $1kl\ (б)$ проекций обратного пространства кристалла ${f I}$

Наблюдаются также нарушения дополнительных условий погасания рентгеновских отражений, связанных с позициями Вайкоффа 4(a) и 4(b). На рис. 1, δ видны рефлексы, индексы которых дают нечетные суммы h+k=2n+1, h+l=2n+1 и l+k=2n+1. Эти запрещенные отражения несовместимы с симметрией особых позиций Вайкоффа 4(a) и 4(b). В результате исключения этого элемента симметрии тригональная решетка переходит в изометрическую триклинную.

Последовательные исключения элементов симметрии в пространственных группах $Pa\overline{3}$ и $R\overline{3}$ соответствуют снижению симметрии кристаллической решетки по цепочке максимальных подгрупп $Pa\overline{3} > R\overline{3} > P\overline{1} > P1$ с индексом 24. С целью изучения поведения ориентационного беспорядка сульфатной группы кристаллическая структура I решалась во всех этих пространственных группах.

Значение величины $\langle |E^2-1| \rangle$ в случае кубической решетки равно 0,990, и оно больше, чем в случае центросимметричных кристаллических структур (0,968). Параметр сходимости интенсивностей эквивалентных отражений $R_{\rm int}$ в различных пространственных группах отличается друг от друга незначительно (см. табл. 1).

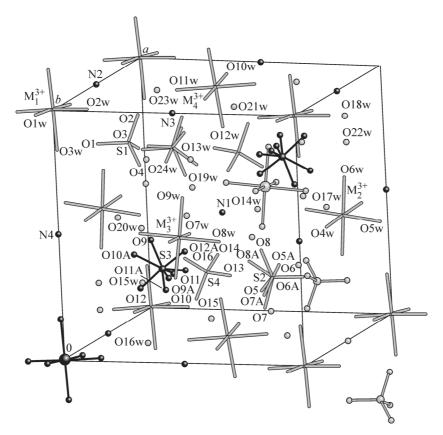
Исключения элементов симметрии кристаллической решетки должно привести к образованию двойникования в кристалле. Рассчитанные значения доли двойников в различных пространственных группах равны: 0.335 в $Pa\overline{3}$, 0.560 в $R\overline{3}$, 0.491 в $P\overline{1}$ и 0.550 в P1. Определить закон двойникования с помощью программы Platon нам не удалось. В предположении, что в кристаллической структуре I имеет место псевдомероэдрическое двойникование, в качестве элемента двойникования были испробованы ось симметрии 2 (во всех группах) и центр инверсии (в пространственной группе P1). При этом эти элементы симметрии не привели к снижению значения R-фактора.

Для решения вопроса о центросимметричности кристалла **I** нами проведено оптическое исследование кристалла на предмет обнаружения генерации второй оптической гармоники. Опыты проведены на кристалле **I** с длиной 3 мм с использованием иттербиевого твердотельного лазера с диодной накачкой и спектрометра ASP-150TF в режиме накопления сигнала в течение ~1,5 с. Интенсивность лазерного излучения составляла ~ $6 \cdot 10^5$ Вт \cdot см⁻², длина основного излучения $\lambda_1 \approx 1059$ нм, длительность одиночных световых импульсов на полувысоте ~70 фс, частота повторения импульсов ~75 Γ ц, поляризация — линейная, мода — TEM_{00} .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимное замещение катионов Fe^{3+} и Al^{3+} в узлах кристаллической решетки, естественно, отражается на параметрах элементарной ячейки кристалла. Значение a=12,263(3) Å лежит между значениями параметров кристаллов однородных квасцов $(NH_4)Al(SO_4)_2 \cdot 12H_2O(12,242(1) \text{ Å})$ [9] и природного минерала лоункрикит $(NH_4)Fe_{0,75}Al_{0,25}(SO_4)_2 \cdot 12H_2O(12,302 \text{ Å})$ [10].

Кристаллическая структура **I** изоморфна структуре однородных квасцов, построена из октаэдров $[M(H_2O)_6]^{3+}$ ($M=Fe^{3+}$ и Al^{3+}), анионов SO_4^{2-} , катионов NH_4^+ и кристаллизационных молекул воды. Эти субъединицы структуры объединены в трехмерную структуру межмолекулярными H-связями.


Усредненный по двум металлам катион $[M(H_2O)_6]^{3+}$ показывает практически регулярное строение, что обусловлено тем обстоятельством, что как катион Fe^{3+} , так и катион Al^{3+} в кристаллах образуют регулярные октаэдрические гексааква-ионы. В пространственной группе $Pa\overline{3}$ эти катионы находятся на инверсионной оси 3-го порядка (позиция 4(a)), реализуя также собственную ось симметрии третьего порядка (см. табл. 1). При переходе к максимальным подгруппам катион $[M(H_2O)_6]^{3+}$ сохраняет собственную геометрию. Расстояния M— O_w во всех случаях равны 1,940 Å (см. табл. 2). Это значение больше, чем расстояние Al— O_w в $NH_4Al(SO_4)_2 \cdot 12H_2O$ 1,883(1) Å [10], $NaAl(SO_4)_2 \cdot 12H_2O$ 1,881(1) Å [11], $KAl(SO_4)_2 \cdot 12H_2O$ 1,908(8) Å [12], и меньше, чем расстояние Fe— O_w в сульфате железа(III)-аммония 1,997(3) Å [13].

Как и в однородных квасцах, сульфатная группа в **I** распределена в двух ориентациях, "перевернутых" относительно атома S: в основной с бо́льшей заселенностью (~87 %) и дополнительной — с меньшей (~13 %) (см. табл. 2). В такой же степени ориентационный беспорядок наблюдается и в $NH_4Al(SO_4)_2 \cdot 12H_2O$. В пр. гр. $Pa\overline{3}$ атомы S и O(1) основной ориентации и атом O(1A) дополнительной расположены на оси вращения 3 (позиция 8(c)). Атом O(1A) в структуре **I**, как и в кристаллических структурах других квасцов, показывает большие параметры смещения.

В работе [11] это явление было изучено для ряда однородных квасцов при различных температурах. Однако причины этого явления не рассматривались. В работе [3] кристаллическую структуру $K(Al_{0.95}Cr_{0.05})(SO_4)_2 \cdot 12H_2O$ рассматривали в триклинной пространственной группе $P\overline{1}$. Аномально большие значения параметров смещения атома O(1A) объясняли небольшими флюктуациями в ориентации сульфатной группы.

Угол O(1)—S—O(1A) является метрикой флюктуации в ориентации тетраэдра SO₄. В пространственной группе $Pa\overline{3}$ атомы S, O(1) и O(1A) находятся на оси 3. В максимальных подгруппах пространственной группы $Pa\overline{3}$ сульфатная группа переходит в общую позицию и становится возможным наблюдение отклонения этого угла от 180° : $169,7(9)^\circ$ в пространственной группе $R\overline{3}$ и в интервалах значений 163,3(10)— $176,1(10)^\circ$ и 156,9(9)— $176,8(10)^\circ$ в пространственной группах $P\overline{1}$ и P1 соответственно (см. табл. 3).

В нецентросимметричной пространственной группе P1 усредняющие действия кристаллографических элементов симметрии отсутствуют и в четырех из восьми позиций (эквивалентных в кубической метрике) сульфатные группы находятся только в одной ориентации, а в остальных четырех распределены в двух ориентациях (рис. 2).

Puc. 2. Упорядоченные и разупорядоченные сульфатные анионы в пр. гр. *P*1 (для простоты атомы H не показаны)

Атом N аммонийной группы в пространственной группе $Pa\overline{3}$ расположен в частной позиции 4(b) на оси $\overline{3}$, что не согласуется с собственной симметрией тетраэдра NH_4^+ . Центросимметричное окружение атома N обусловлено ориентационным беспорядком аммонийной группы в двух взаимно противоположных ориентациях с атомом N в кристаллографическом центре симметрии. В каждой ориентации катион NH_4^+ участвует в трех H-связях N—H...O_w(2) с тремя молекулами H_2O , которые расположены вокруг оси симметрии 3 (см. рис. 2). Тетраэдр NH_4^+ сжат вдоль оси вращения 3. Симметрично расположенные шесть молекул воды благодаря своим водородным связям "вынуждают" катион аммония принимать две противоположные ориентации. Четвертая H-связь аммонийной группы типа N—H...O(1A) образуется с соседней группой SO_4 , расположенной в дополнительной ориентации.

В пространственной группе P1 катионы NH_4^+ расположены между двумя сульфатными группами, одна из них имеет основную ориентацию, а вторая разупорядочена по двум ориентациям. В отличие от I, в кристаллической структуре $NH_4Al(SO_4)_2 \cdot 12H_2O$ [9] катион NH_4^+ распределен в двух позициях 24(d) возле центра инверсии с равными заселенностями.

Лазерные исследования кристаллов **I** показали, что кристалл генерирует вторую оптическую гармонику (529,5 нм) при прохождении через него цуга чирпированных световых импульсов иттербиевого твердотельного лазера с диодной накачкой ($\lambda_1 \approx 1059$ нм), что согласуется с кристаллографическими данными о псевдосимметричности кристалла **I**.

Отметим, что спектр излучения второй гармоники, так же как и спектр основного излучения лазера, имеет хорошо выраженную колоколообразную форму, однако наблюдается заметное сужение ширины спектра второй гармоники на уровне 0,5 амплитуды. При этом коэффициент преобразования основного излучения в кристалле во вторую гармонику по энергии составляет $\sim 10^{-3} \div 10^{-4}$.

выводы

В результате проведенных исследований установлено, что:

- a) в части позиций кристаллической структуры сульфатные группы расположены в одной ориентации;
- δ) наблюдается флюктуация в ориентации сульфатных групп, расположенных в дополнительной ориентации;
- *в*) в центросимметричных пространственных группах катион NH₄⁺ занимает кристаллографический центр симметрии, который не соответствует собственной симметрии катиона;
 - г) кристалл I генерирует вторую оптическую гармонику.

СІГ-файл, содержащий все структурные данные по всем четырем пространственным группам, депонирован в ССDС под номером 999683-999686 (www.cdc.cam.ac.uk/data requist/cif).

Автор выражает глубокую признательность к.ф.-м.н. С.А. Талипову и к.х.н. Ж.А. Ашурову (Институт биоорганической химии АН РУз) за рентгеноструктурный эксперимент и д.ф.-м.н., проф. А.К. Каххарову (Институт теплофизики АН РУз) за лазерные исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cooke A.H. // Proc. Roy. Soc. 1949. **A62**, N 2. P. 269 276.
- Штукенберг А.Г., Франк-Каменецкая О.В., Баннова И.И. и др. // Кристаллография. 2000. 45, № 6. С. 999 1005.
- 3. *Рождественская И.В., Франк-Каменецкая О.В., Штукенберг А.Г, Баннова И.И.* // Журн. структур. химии. 2001. **42**, № 4. C. 753 765.
- 4. *Лабутина М.Л.*, *Марычев М.О*. Материалы оптоэлектроники и лазерные технологии. ВМНШ 2007. Саранск, 2007.
- 5. *Lipson H.* // Proc. Roy. Soc. 1935. **A151**. P. 347 356.

- 6. Oxford Difraction Ltd. CrysAlisPro. Version. 1.171.33.44, 2009.
- 7. Sheldrick G.M. SHELX-97, Program for Crystal Structure Refinement, Göttingen (Germany): Univ. of Göttingen, 1997.
- 8. *Sheldrick G.M.* // Acta Crystallogr. 2008. **A64**, N 1. P. 112 122.
- 9. Abdeen A.M., Will G., Schafer W., Kirfel A., Bargouth M.O., Recker K., Weiss A. // Z. Kristallogr. 1981. 157, N 1. S. 147 166.
- 10. *Martini J.E.J.* // Ann. Geol. Surv. S. Africa. 1983. 17. P. 29 34.
- 11. Cromer D.T., Kay M.I., Larson A.C. // Acta Crystallogr. 1967. **B22**, N 2. P. 182 187.
- 12. Larson A.C., Cromer D.T. // Acta Crystallogr. 1967. 22, N 6. P. 793 799.
- 13. *Palmer K.J., Wong R.Y., Lee K.S.* // Acta Crystallogr. 1972. **B28**, N 1. P. 236 241.
- 14. Kay M.I., Cromer D.T. // Acta Crystallogr. 1970. **B26**, N 9. P. 1349 1355.