УДК 533.95

ДИНАМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ТВЕРДОГО НАМАГНИЧЕННОГО ТЕЛА С ПОТОКОМ РАЗРЕЖЕННОЙ ПЛАЗМЫ

В. А. Шувалов, Н. А. Токмак, Н. И. Письменный, Г. С. Кочубей

Институт технической механики НАНУ, 49005 Днепропетровск, Украина E-mails: shuv@vash.dp.ua, tokmak@vash.dp.ua, pism@vash.dp.ua, koch@vash.dp.ua

Получены зависимости коэффициентов силы сопротивления и подъемной силы намагниченной сферы в гиперзвуковом потоке разреженной плазмы от угла между вектором скорости потока плазмы и вектором индукции собственного магнитного поля тела в широком диапазоне значений отношения магнитного давления к скоростному напору потока плазмы. Показано, что изменение ориентации векторов магнитного поля тела и скорости набегающего потока позволяет управлять динамическим взаимодействием в системе плазма — тело, а именно реализовывать режимы торможения и ускорения намагниченной сферы в гиперзвуковом потоке разреженной плазмы.

Ключевые слова: намагниченное тело, гиперзвуковой поток разреженной плазмы, магнитное поле.

DOI: 10.15372/PMTF20160116

Введение. В последнее десятилетие в ракетно-космической технике активно разрабатываются новые методы и средства управления движением тел и выведения различных грузов на орбиту. Одним из направлений развития ракетно-космической техники является использование собственного магнитного поля космического аппарата (KA) для управления его движением (торможение или ускорение) в межпланетном пространстве, ионосфере и атмосфере Земли. Исследования в этой области направлены на изучение динамического взаимодействия в системе намагниченное тело — плазма, обоснование возможности применения магнитогидродинамических (МГД) систем для управления движением KA.

Численные оценки, выполненные в работах [1–3], показывают, что в ионосфере Земли и межпланетном пространстве собственное магнитное поле тела может быть использовано для управления движением KA.

Для эффективного МГД-управления КА в ионосфере Земли и межпланетном пространстве необходимо выполнение условий $\text{Re}_m \gg 1$ и $P_{BW}/P_d \gg 10$ ($\text{Re}_m = \mu \sigma U R_W$ — магнитное число Рейнольдса; μ — магнитная проницаемость; σ — проводимость плазмы; U — скорость потока плазмы; R_W — характерный линейный размер КА; $P_{BW} = B_W^2/(2\mu)$ — магнитное давление; B_W — индукция собственного магнитного поля КА; $P_d = \rho U^2/2$ — скоростной напор (динамическое давление); ρ — плотность набегающего потока).

Работа выполнена в рамках Целевой комплексной программы НАН Украины по научным космическим исследованиям на 2012–2016 гг. (код проекта II-16-13-2).

[©] Шувалов В. А., Токмак Н. А., Письменный Н. И., Кочубей Г. С., 2016

Возможность управления динамическим взаимодействием твердого тела с гиперзвуковым потоком сильноразреженной плазмы с помощью собственного магнитного поля экспериментально не подтверждена.

Целями данной работы являются экспериментальное исследование возможности управления динамическим взаимодействием в системе плазма — сфера путем вращения собственного магнитного поля тела и получение зависимости коэффициентов силы сопротивления и подъемной силы сферы от угла θ между вектором скорости потока бесстолкновительной плазмы U и вектором индукции собственного магнитного поля B_W .

Параметры взаимодействия в системе плазма — тело в ионосфере Земли и межпланетном пространстве. Для тел с характерным размером $R_W \sim 10^3$ м в отсутствие собственного магнитного поля ($B_W = 0$) в плазме солнечного ветра реализуются условия $\text{Re}_m \gg 1$, $r_i/R_W \gg 1$, $r_e/R_W \sim 1$, $R_W/\lambda_d \ge 10^2$, $S_i = U/V_i \approx 10$ [4], где r_i , r_e — ларморовские радиусы ионов и электронов; λ_d — дебаевский радиус в невозмущенной плазме; U — скорость потока плазмы солнечного ветра; V_i — тепловая скорость ионов.

В ионосфере Земли на высоте 800 ÷ 1000 км тело с характерным размером $R_W \sim 1$ м и $B_W = 0$ взаимодействует с гиперзвуковым потоком разреженной плазмы при $\text{Re}_m > 1$; $r_i/R_W > 1$, $r_e/R_W \ll 1$, $R_W/\lambda_d \ge 10^2$, $S_i = U/V_i \approx 5,0$ [5] (U — скорость полета KA). Для тел, движущихся в ионосферной плазме и плазме солнечного ветра, выполняются условия МГД-приближения [6], за исключением условия $\tau_{Ri} \gg \nu_{em}^{-1}$ ($\tau_{Ri} = 2R_W/U$ временной масштаб макроскопических изменений в плазме; $\nu_{em} = \nu_{ei} + \nu_{en}$ — средняя частота соударений электронов с ионами и нейтральными частицами).

Наличие собственного магнитного поля приводит к существенному изменению картины течения, пространственного распределения заряженных частиц и характера динамического взаимодействия твердого тела с гиперзвуковым потоком разреженной плазмы.

При $B_W \approx 0,1$ Тл, $P_{BW}/P_d \gg 1$ для твердого тела с характерным размером $R_W \sim 1$ м в ионосфере Земли на высоте $800 \div 1000$ км и тел с $R_W \sim 10^3$ м в межпланетном пространстве гиперзвуковой поток полностью замагниченной разреженной плазмы ($\omega_{\alpha B} \nu_{\alpha m}^{-1} \gg 10$) взаимодействует с намагниченным телом при $r_{e,i}/R_W \ll 1$ ($\omega_{\alpha B} \nu_{\alpha m}^{-1}$ — параметр Холла; $\omega_{\alpha B}$ — циклотронная (ларморовская) частота ионов ($\alpha = i$) и электронов ($\alpha = e$); $\nu_{em} = \nu_{ei} + \nu_{en}$, $\nu_{im} = \nu_{ii} + \nu_{in}$ — средние частоты соударений электронов с ионами и нейтральными частицами и ионов с ионами и нейтральными частицами).

Можно предположить, что при реализации на стенде в физическом эксперименте приведенных выше условий взаимодействия тел с гиперзвуковым потоком замагниченной разреженной плазмы выявленные в ходе исследований закономерности динамического взаимодействия в системе намагниченное тело — плазма могут быть использованы для оценки коэффициентов силы сопротивления C_{Bx} и подъемной силы C_{By} твердого тела в ионосфере Земли и межпланетном пространстве.

Параметры потока в системе плазма — тело на стенде. Эксперименты проводились на плазмодинамическом стенде Института технической механики НАНУ. Наличие безмасляной системы откачки и криопанелей, охлаждаемых жидким азотом, позволяет реализовать в вакуумной камере — цилиндре диаметром 1,2 м и длиной 3,5 м — остаточное разрежение 10^{-5} H/m². Результаты масс-спектрометрического анализа показывают, что в остаточном газе преобладают два компонента: CO+N₂ и H₂, в небольшом количестве присутствуют водяной пар H₂O и CO₂. При рабочем давлении $4 \cdot 10^{-3}$ H/m² в струе плазмы (рабочий газ — азот высшей очистки) преобладающими компонентами являются ионы азота. В вакуумной камере стенда параметры набегающего потока разреженной плазмы имели следующие значения: концентрация ионов $2 \cdot 10^{14}$ м⁻³ $\leq N_i \leq 5 \cdot 10^{15}$ м⁻³, скорость направленного движения ионов 8,1 км/с $\leq U \leq 15,6$ км/с, средняя масса ионов $M_i \approx 19,6$ а.е.м., температура электронов $T_e \approx 2,6$ эВ, температура ионов $T_i \approx 0,52$ эВ, температура нейтральных частиц $T_n \approx 0.23$ эВ, концентрация нейтральных частиц $N_n \approx 1.4 \cdot 10^{17}$ м⁻³, средняя скорость направленного движения нейтральных частиц $U_n \approx 6 \cdot 10^2$ м/с, степень ионизации $10^{-3} \leq \xi_i \leq 10^{-2}$, отношение скорости потока плазмы к тепловой скорости понов $3.6 \leq S_i \leq 6.9$, проводимость плазмы $1.4 \cdot 10^2$ Ом⁻¹ · м⁻¹ $\leq \sigma \leq 1.9 \cdot 10^3$ Ом⁻¹ · м⁻¹, индукция внешнего магнитного поля $B \approx 10^{-3}$ Тл, характерный размер рабочего сечения струи 0.3 м (рабочее сечение — область с равномерным распределением скорости, концентрации заряженных частиц и индукции внешнего магнитного поля), скоростной напор потока $2 \cdot 10^{-4}$ H/м² < $P_d \leq 2 \cdot 10^{-2}$ H/м².

Для измерения параметров потока плазмы использовались система электрических зондов (цилиндрический, плоский, многоэлектродный зонд-анализатор) и СВЧинтерферометры, работающие на частотах 5,45 и 9,8 ГГц [7]. Зонды установлены на подвижной платформе координатника с четырьмя степенями свободы, обеспечивающей перемещение в горизонтальной и вертикальной плоскостях, а также вращение вокруг вертикальной оси. Погрешность замера линейных перемещений составляет $0,5 \cdot 10^{-3}$ м, угловых — $0,5^{\circ}$. Осевое и радиальное распределения концентрации заряженных частиц в плазменной струе приведены в [7]. Состав ионов потока плазмы и степень диссоциации ионного компонента $\xi_{di} = 0,6$ контролируются масс-спектрометром МХ7303.

В качестве исследуемого тела использовались две диэлектрические (фторопласт-4) сферы, имеющие радиусы $R_{W1} = 4,35 \cdot 10^{-2}$ м, $R_{W2} = 5,25 \cdot 10^{-2}$ м. В потоке плазмы на стенде реализованы следующие условия: $1,3 \cdot 10^{-5}$ с $\leq \nu_{em}^{-1} \leq 2,4 \cdot 10^{-5}$ с; $8 \cdot 10^8$ с⁻¹ $\leq \omega_{ep} \leq 4 \cdot 10^9$ с⁻¹; $10 \leq \text{Re}_m \leq 2,1 \cdot 10^2$; $0,52 \cdot 10^2 \leq R_W/\lambda_d \leq 3,10 \cdot 10^2$; $9,4 \leq r_i/R_W \leq 11,3$; $10^{-1} \leq r_e/R_W \leq 1,3 \cdot 10^{-2}$ (ω_{ep} — плазменная (ленгмюровская) частота). Таким образом, $\text{Re}_m \geq 10, R_W/\lambda_d \geq 10^2, r_e/R_W \ll 1, r_i/R_W > 1$. Кроме того, для ненамагниченных сфер в потоке разреженной плазмы на стенде выполнялись те же условия МГД-приближения, что и для КА в ионосфере и плазме солнечного ветра [6].

С намагниченными сферами (индукция магнитного поля на поверхности сферы $B_W \ge 2 \cdot 10^{-2} \text{ Tл}$) на стенде взаимодействует гиперзвуковой поток разреженной замагниченной плазмы $(r_e/R_W \ll 1, r_i/R_W < 1, \omega_{eB}\nu_{em}^{-1} \gg 1, \omega_{iB}\nu_{im}^{-1} > 1)$. В качестве источников собственного магнитного поля намагниченных сфер исполь-

В качестве источников собственного магнитного поля намагниченных сфер использовались два соленоида. Внешний диаметр соленоида 1 $D_{S1} = 5 \cdot 10^{-2}$ м, длина $L_{S1} = 3.4 \cdot 10^{-2}$ м, внутренний диаметр $d_{S1} = 2 \cdot 10^{-2}$ м, для соленоида 2 $D_{S2} = 6 \cdot 10^{-2}$ м, $L_{S2} = 6 \cdot 10^{-2}$ м, $d_{S2} = 1.5 \cdot 10^{-2}$ м.

Внутри моделей соленоиды термоизолированны (покрыты экранно-вакуумной теплоизоляцией и помещены в герметичный корпус из алюминиевой фольги толщиной 0.3×10^{-3} м).

Значения магнитного момента источников поля находятся в диапазоне $P_m = 2,1 \cdot 10^{-7} \div 4,5 \cdot 10^{-5}$ Тл · м³, при этом $7,2 \leq P_{BW}/P_d \leq 1,1 \cdot 10^5$. При кратковременном пропускании тока силой до 10 А получены максимальное $B_W^{\text{max}} \approx 2 \cdot 10^{-1}$ Тл и минимальное $B_W^{\text{min}} \approx 8 \cdot 10^{-4}$ Тл значения индукции магнитного поля на поверхности сферы.

Для измерения индукции магнитного поля и модуля магнитного момента использовался магнитометр. Погрешность измерения P_m не превышала 10^{-2} A·M². Для используемых соленоидов с относительным радиусом $R_S/R_W \leq 0.6$ и относительной длиной $L_S/R_W \leq 0.6$ распределения осевой B_z и радиальной B_r составляющих индукции магнитного поля на расстояниях $z/R_W \geq 0.8$ и $r/R_W \geq 0.8$ от центра сферы близки к дипольному: $B_z = P_m/(2\pi z^3), B_r = P_m/(4\pi r^3)$ [6, 8].

Обтекание намагниченной сферы потоком разреженной плазмы. Экспериментальное исследование динамического взаимодействия в системе плазма — намагниченная сфера проводилось на плазмодинамическом стенде практически в стационарном режиме. Описание эксперимента приведено в [9].

Рис. 1. Картина обтекания намагниченной сферы гиперзвуковым потоком разреженной плазмы:

 $a - \theta = 180^{\circ}; \ \delta - \theta = 120^{\circ}; \ s - \theta = 95^{\circ}; \ r - \theta = 80^{\circ}$

На рис. 1 представлена картина обтекания намагниченной сферы радиусом $R_{W1} \approx 4.35 \cdot 10^{-2}$ м при различных углах θ между вектором скорости U набегающего потока и вектором индукции собственного магнитного поля B_W . Видно, что при $\theta = \pi$ вблизи поверхности намагниченной сферы формируется струйное течение, при $\theta \approx \pi/2$ — искусственная магнитосфера.

На рис. 2 приведены осевые распределения плотности ионного тока насыщения j_i на цилиндрическом зонде, перемещаемом вдоль осевой линии плазменного образования от среза плазменного ускорителя до поверхности намагниченной сферы. Распределение $j_i/j_{0i}(-z/R_W)$ на рис. 2,*a* соответствует структуре поля течения, показанной на рис. 1,*a* (векторы индукции собственного магнитного поля тела B_W и скорости потока плазмы Uнаправлены навстречу друг другу: $B_W \uparrow \downarrow U$). Распределение, представленное на рис. 2,*b*, соответствует случаю $B_W \perp U$ ($\theta = 90^{\circ}$). На рис. 2 плотность ионного тока насыщения нормирована на ее величину j_{0i} , измеренную на срезе плазменного ускорителя.

При измерениях плотности ионного тока цилиндрический зонд из молибдена длиной $l_p = 4 \cdot 10^{-3}$ м и радиусом $r_p = 4,5 \cdot 10^{-3}$ м был ориентирован ортогонально силовым линиям собственного магнитного поля сферы. В осевом распределении j_i/j_{0i} на рис. 2,6 можно выделить три области: I — набегающий поток плазмы, II — заторможенный полем сферы поток плазмы; III — "пустая" каверна вблизи поверхности намагниченной сферы IV. Измерения выполнены в гиперзвуковом потоке разреженной плазмы

Рис. 2. Осевые распределения нормированной плотности ионного тока насыщения j_i/j_{0i} на цилиндрическом зонде вблизи поверхности намагниченной сферы: $a - \theta = 180^{\circ} (\mathbf{B}_W \uparrow \downarrow \mathbf{U}), \ \delta - \theta = 90^{\circ} (\mathbf{B}_W \bot \mathbf{U}); \ \mathbf{I}$ — набегающий поток плазмы, II заторможенный полем сферы поток плазмы, III — "пустая" каверна, IV — поверхность намагниченной сферы

 $(U = 11,5 \text{ км/с}, N_i \approx 4 \cdot 10^{15} \text{ м}^{-3}, P_m \approx 3 \cdot 10^{-6} \text{ Тл} \cdot \text{м}^3)$ вблизи поверхности сферы радиусом $R_{W2} \approx 5,25 \cdot 10^{-2}$ м. Характер пространственного распределения j_i/j_{0i} в вертикальном сечении фронтальной области поля течения близок к характеру распределения, приведенного на рис. 7 в [10].

Результаты измерений. Коэффициенты силы сопротивления и подъемной силы намагниченной сферы. Коэффициент силы сопротивления ненамагниченной сферы в гиперзвуковом потоке бесстолкновительной плазмы равен $C_{\Sigma x} = C_{0x} + C_{\Phi x}$ ($C_{0x} = A_S P_d$ — коэффициент силы сопротивления, обусловленной контактным взаимодействием ионов потока плазмы с лицевой поверхностью сферы; $A_S = \pi R_W^2$ — миделево сечение сферы; $C_{\Phi x}$ — коэффициент кулоновской составляющей силы сопротивления). Для сферы большого размера ($R_W/\lambda_d \gg 10$) выполняется соотношение $C_{\Phi x}/C_{0x} = 1 + \{1 - \exp\left[-\Phi_W^{0,5}/(0,263(R_W/\lambda_d))\right]\}\eta^{2/3}$ [11], где $\Phi_W = e\varphi_W/(kT_e)$; e — заряд электрона; $\varphi_W = \varphi_p - \varphi_0$ — разность потенциалов поверхности сферы φ_p и плазмы φ_0 ; k — постоянная Больцмана; T_e — температура электронов; $\eta = e\varphi_W/(0,5M_iU^2)$. Для сферы в гиперзвуковом потоке разреженной плазмы $\Phi_W = -\ln\left[2kT_e/(\pi m_eU^2)\right]$, где m_e — масса электрона [12]. При $R_W/\lambda_d > 50$ $C_{\Phi x}/C_{0x} \to 0$, $C_{\Sigma x}/C_{0x} \to 1$ [11, 13]. При бесстолкно-

Рис. 3. Зависимость коэффициента силы сопротивления сферы $C_{\Sigma x}/C_{0x}$ от параметра P_{BW}/P_d при $B_W \uparrow \downarrow U$, $\theta = 180^{\circ}$:

1— результаты измерений для сферы радиусом $R_{W1}=4,35\cdot 10^{-2}$ м при U=8,1км/с, $N_i\approx 7\cdot 10^{14}$ м $^{-3},\,2$ — результаты измерений для сферы радиусом $R_{W2}=10,5\cdot 10^{-2}$ м при U=15,6км/с, $N_i\approx 4\cdot 10^{15}$ м $^{-3},\,3$ — аппроксимация по формуле $C_{\Sigma x}(\theta)/C_{0x}=1,06\exp\left(5,65\cdot 10^{-2}\operatorname{sign} \lg\left(P_{BW}/P_d\right) \lg^2\left(P_{BW}/P_d\right)\right)$ $(\theta=\pi)$

вительном обтекании сферы гиперзвуковым потоком $C_{0x} \approx 2,0$ [14]. Для намагниченной $(B_W \neq 0)$ сферы большого размера $C_{\Sigma x}/C_{0x} = 1 + C_{Bx}/C_{0x}$, где C_{Bx}/C_{0x} — магнитная составляющая силы сопротивления сферы в гиперзвуковом потоке плазмы.

На рис. 3 приведена зависимость коэффициента силы сопротивления намагниченной сферы $C_{\Sigma x}(\theta)/C_{0x}$ ($\theta = \pi$) от параметра P_{BW}/P_d . Как и в экспериментах [9], при измерении силового взаимодействия в системе плазма — тело использовались микровесы компенсационного типа, регистрирующие силу в автоматическом режиме. Для повышения чувствительности микровесов, уменьшения вклада быстрых и медленных нейтральных частиц, метастабильных атомов, влияния тепловых флуктуаций державка модели была защищена от контакта с потоком разреженной плазмы диэлектрическим экраном, а магнитоэлектрическая система весов помещена в диэлектрический корпус. На плече длиной 0,5 м диапазон значений измеряемой силы составляет $10^{-8} \div 10^{-3}$ H [14]. При тарировке микровесов использовалась методика, изложенная в работе [15]. Погрешность измерения силы не превышала $\pm 4,5$ %.

На рис. 4, 5 приведены зависимости коэффициента силы сопротивления $C_{\Sigma x}/C_{\Sigma x}(\pi)$ и коэффициента магнитной составляющей подъемной силы $C_{By}/C_{By}(\pi/2)$ сферы от угла θ в гиперзвуковом потоке разреженной плазмы.

Зависимости магнитных составляющих коэффициентов силы сопротивления $C_{Bx}(\theta)/C_{0x}$ и подъемной силы $C_{By}(\theta)$ намагниченной сферы радиусом $R_{W1} = 4,35 \cdot 10^{-2}$ м в широком диапазоне углов $0^{\circ} \leq \theta < 180^{\circ}$ при $P_{BW}/P_d = 3,8 \cdot 10^4$ представлены на рис. 6. Приведенные зависимости свидетельствуют о возможности реализации динамического взаимодействия в системе плазма — сфера с ненулевым аэродинамическим качеством, а также о возможности торможения и ускорения намагниченной сферы при обтекании ее гиперзвуковым потоком разреженной плазмы.

Сила, действующая на магнитный диполь с моментом P_m в неоднородном магнитном поле с градиентом $\partial B/\partial x$, равна $F \approx P_m \partial B/\partial x$ [3, 8]. Так же как в случае искусственной магнитосферы, следуя [3], имеем $F \sim P_m B_{mp}/r_{mp}$ (r_{mp} — расстояние от центра сферы до границы заторможенного потока плазмы, измеренное в экваториальной плоскости при $B_W \perp U$ ($\theta = \pi/2$); B_{mp} — индукция магнитного поля на границе заторможенного потока). В приближении идеализированного магнитного диполя $r_{mp} = (P_m^2/(2\pi P_d))^{1/6}$,

Рис. 4

Рис. 5

Рис. 4. Зависимость коэффициента силы сопротивления $C_{\Sigma x}(\theta)/C_{\Sigma x}(\pi)$ от угла θ : 1 — результаты измерений для сферы радиусом $R_{W1} = 4,35 \cdot 10^{-2}$ м; 2 — результаты расчета [4]; 3 — аппроксимация по формуле $C_{\Sigma x}(\theta)/C_{\Sigma x}(\pi) = |\cos^{0.5} \theta| + 0,493 \sin^7 \theta$ [$|\sin \theta - |\cos \theta| |\sin^2 \theta - |\cos^{0.5} \theta|$]

Рис. 5. Зависимость коэффициента подъемной силы $C_{By}(\theta)/C_{By}(\pi/2)$ от угла θ : точки — результаты измерений для сферы радиусом $R_{W1} = 4.35 \cdot 10^{-2}$ м; линия — аппроксимация по формуле $C_{\Sigma x}(\theta)/C_{\Sigma x}(\pi/2) = \sin^{0.8} \theta [\sin \theta - |\cos \theta| (1 - |\cos \theta|)||]$

Рис. 6. Зависимости магнитных составляющих коэффициентов силы сопротивления $C_{Bx}(\theta)/C_{0x}$ (1) и подъемной силы $C_{By}(\theta)$ (2) от угла между векторами B_W и U

Рис. 7. Зависимости магнитных составляющих коэффициентов силы сопротивления и подъемной силы от параметра r_{mp}/R_W при $B_W \perp U$: 1, 2 — результаты измерений для сферы радиусом $R_{W1} = 4,35 \cdot 10^{-2}$ м с соленоидом 1 в центре при U = 11,5 км/с, $N_i \approx 4 \cdot 10^{15}$ м⁻³ $(1 - C_{Bx}(\pi/2), 2 - C_{By}(\pi/2)); 3$ — результаты расчетов по формуле $C_{Bx} = 5,07 \cdot 10^{-2} r_{mp}^2/R_W^2$

 $B_{mp} = P_m/(4\pi r_{mp}^3)$ [3]. Для намагниченной сферы с магнитным диполем в центре $C_{Bx}(\pi/2) = F_x/(\pi R_W^2 P_d) \approx 5.07 \cdot 10^{-2} r_{mp}^2/R_W^2$. На рис. 7 приведены зависимости C_{Bx} и C_{By} от r_{mp}/R_W при $B_W \perp U$.

Заключение. В работе получены зависимости коэффициентов силы сопротивления и подъемной силы намагниченной сферы в гиперзвуковом потоке разреженной плазмы от угла $0^{\circ} \leq \theta \leq 180^{\circ}$ между вектором скорости потока U и вектором индукции B_W собственного магнитного поля тела. Установлено, что, вращая вектор индукции магнитного поля B_W относительно вектора скорости потока U, можно управлять динамическим взаимодействием в системе плазма — тело, реализовывать режимы такого взаимодействия с ненулевым аэродинамическим качеством C_{Bx}/C_{By} , режимы торможения и ускорения намагниченной сферы при обтекании ее гиперзвуковым потоком разреженной плазмы.

ЛИТЕРАТУРА

- Zubrin P. M., Andrews D. G. Magnetic sail and interplanetary travel // J. Spacecraft Rockets. 1991. V. 28, N 2. P. 197–203.
- Nishida H., Nakayama Y. Two-dimentional magnetohydrodynamic simulation of a magnetic sail // J. Spacecraft Rockets. 2006. V. 43, N 3. P. 667–672.
- Toivanen P. K., Janhunen P., Koskinen H. E. J. Magnetospheric propulsion (eM-Pii): Final rep. / Finnish Meteorol. Inst. Helsinki, 2004.

- 4. Веселовский И. С. Солнечный ветер и гелиосферное магнитное поле // Модель космоса 2007. М.: Кн. дом "Университет", 2007. Т. 1. С. 314–346.
- Гуревич А. В. Нелинейная теория распространения радиоволн в ионосфере / А. В. Гуревич, А. Б. Шварцбург. М.: Наука, 1973.
- 6. Митчнер М. Частично ионизованные газы / М. Митчнер, И. Кругер. М.: Мир, 1976.
- Шувалов В. А., Кочубей Г. С., Приймак А. И. и др. Изменение свойств материалов панелей солнечных батарей КА под воздействием атомарного кислорода // Косм. исслед. 2007. Т. 45, № 4. С. 294–304.
- 8. Эберт Г. Краткий справочник по физике. М.: Физматгиз, 1963.
- 9. Шувалов В. А., Приймак А. И., Бандель К. А. и др. Теплообмен и торможение намагниченного тела в потоке разреженной плазмы // ПМТФ. 2011. Т. 52, № 1. С. 3–12.
- 10. Шувалов В. А. О структуре плазменных образований у поверхности цилиндра в потоке частично ионизованного газа // ПМТФ. 1984. № 4. С. 3–11.
- Шувалов В. А. О влиянии потенциала поверхности и собственного магнитного поля на сопротивление тела в сверхзвуковом потоке разреженного частично ионизованного газа // ПМТФ. 1986. № 3. С. 41–47.
- 12. Альперт Я. Л. Искусственные спутники в разреженной плазме / Я. Л. Альперт, А. В. Гуревич, Л. П. Питаевский. М.: Наука, 1964.
- Вуд Г. П. Электрическое и электромагнитное торможение спутника в верхней атмосфере Земли // Газовая динамика космических аппаратов. М.: Мир, 1965. С. 258–277.
- 14. Шувалов В. А. О передаче импульса газовых ионов поверхности твердого тела // ПМТФ. 1984. № 3. С. 24–32.
- 15. **Марсден Д. Г.** Микровесы для средней чувствительности для измерения сил давления молекулярных пучков // Приборы для науч. исслед. 1968. Т. 31, № 1. С. 41–44.

Поступила в редакцию 9/IV 2014 г., в окончательном варианте — 6/VIII 2014 г.