Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2016 год, номер 3

Математическое исследование систем с двумя переменными с использованием адаптивных численных методов

К.М. Оволаби1,2
1University of the Western Cape Private, Bag X17, Bellville 7535, South Africa
mkowolax@yahoo.com
2Federal University of Technology, Akure PMB 704, Akure, Ondo State, Nigeria
Ключевые слова: модель хищник-жертва, ЭВР-методы, нелинейный, образование структур, реакция-диффузия, устойчивость, зависящие от времени дифференциальные уравнения в частных производных (ДУЧП), неустойчивость по Тьюрингу, predator-prey model, ETD methods, nonlinear, pattern formation, reaction-diffusion, stability, time-dependent PDE, Turing instability
Страницы: 281-295

Аннотация

В данной статье рассматриваются системы реакции-диффузии, возникающие из двухкомпонентных моделей хищник-жертва с использованием функционального отклика роста Смита. Используемый здесь математический подход является двояким, поскольку эти зависящие от времени дифференциальные уравнения в частных производных имеют как линейные, так и нелинейные члены. Мы дискретизируем жесткий или умеренно жесткий член разностным оператором четвертого порядка, рассчитываем полученную в результате нелинейную систему обыкновенных дифференциальных уравнений при помощи семейства из двух конкурирующих семейств экспоненциальных временных разностных (ЭВР) схем и анализируем их устойчивость. Также представлено численное сравнение этих двух методов для решения различных моделей популяций хищник-жертва. Численные результаты показывают, что для этих методов требуется меньше вычислений. Кроме того, в численных результатах обнаружены некоторые новые пространственные структуры.

DOI: 10.15372/SJNM20160304
Добавить в корзину
Товар добавлен в корзину