Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Contemporary Problems of Ecology

2023 year, number 4

Fungal diversity of native and alien leguminous woody plants in the Middle Urals

А. G. Shiryaev1, I. V. Zmitrovich1,2, P. Zhao3, S. А. Senator1,4, Т. S. Bulgakov1,5
1Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
2V. L. Komarov Botanical Institute of the Russian Academy of Sciences, St-Petersburg, Russia
3Institute of Microbiology, Chinese Academy of Sciences, Beijing, Chaina
e-mail: zhaopeng@im.ac.cn
4Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia
5Federal Scientific Centre of Subtropical Research Centre of the Russian Academy of Sciences, Sochi, Russia
Keywords: Russia, Kazakhstan, anthropogenic impact, biogeography, ecology, phytopathology, invasion, climate.

Abstract

The biodiversity of wood-destroying fungi on leguminous woody plants (LWP) growing in the Middle Urals has been studied for the first time. In the model region – Sverdlovsk province, from 2002 to 2022, there are 136 species of wood-destroying fungi were collected: 127 species of Basidiomycota and 9 species of Ascomycota. Fungi develop on 12 out of 20 species of LWP. The largest number of fungal species was found on the alien Caragana arborescens (115 species / 84.5 % of the total number of species), while on Caragana decorticans, C. ussuriensis, Laburnum alpinum two each, and one on Genista florida. 122 species of fungi were found on nine alien species of the LWP, which is 4.1 times more than on three native species. The largest number of substrate-specific fungal species develops on C. arborescens (85/62.5 %), while four on Chamaecytisus ruthenicus (2.9 %), three on Maackia amurensis (2.2 %), two each on Genista tinctoria and Robinia pseudoacacia (1.5 %), and one species on Caragana ussuriensis (0.7 %). Nectria cinnabarina develops on seven species of LWP, on six species – Xylodon sambuci, on four – Peniophora cinerea and Schizophyllum commune. In contrast, 71.3 % of fungal species were found on one LWP species, and 27.2 % of species are characterized by a single find. For the first time for Sverdlovsk province, 14 fungal species are indicated, of which 86 % were found in the parks of Ekaterinburg city, tree-lines along the roads, but only 14 % in natural conditions.

In order to reveal the latitudinal-zonal specificity for the distribution of species richness of the LWP associated mycobiota, we use Aphyllophoroids as the largest group of fungi among all analyzed (75 % of species), and Caragana arborescens, or Siberian pea tree, is the richest plant substrate. Changes in the fungal diversity were studied along a meridional transect stretching for 800 km. along 60° E, from the middle boreal subzone of Sverdlovsk province to the steppes of Chelyabinsk province (Russia) and Kostanay province (Kazakhstan). In each of the 5 vegetation zones/subzones, as well as in Ekaterinburg city, six sites were studied, the area of which varies from 0.9 to 6.8 ha. The aboveground phytomass of C. arborescens is maximal in the forest-steppe (8.9–11.7 t/ha), and minimal at the edges of transect (2.4–5.8 t/ha).A positive correlation was found between the aboveground plant phytomass and the species richness of mycobiota, while there was no correlation with climatic parameters. In Ekaterinburg city, where the Siberian pea tree phytomass is two times lower than in the forest-steppe, but the species richness of mycobiota is similar to the forest-steppe, is out of this pattern. A similar result was obtained for α-diversity (average number of fungal species on the sites and Shannon index) of mycobiota: an increase in indicators from the middle boreal subzone to the forest-steppe and a decrease in the steppe. The Whittaker and Czekanowski – Sørensen indices (β-diversity) increase towards the steppe, which is due to a strong relationship with the mean annual temperature and precipitation. A range of fungal species gravitating towards northern, southern and urbanized conditions has been revealed. In the north of transect, local species of fungi predominate, while in the south and in Ekaterinburg city, the role of biogeographically distant (alien) taxa is high. In this regard, the species composition of Siberian pea tree’s mycobiota is divided into two clusters – northern (boreal) and southern (nemoral-steppe) including Ekaterinburg city. To the south, species richness of pathogenic fungi increases, but this parameter does not correlate with the C. arborescens phytomass. In plantings of invasive Siberian pea tree, species richness of Poroid fungi is similar to Corticioid fungi at the local and regional level, which differs significantly from natural conditions. A high level of pathogenic fungi was also revealed compared to natural conditions. The results obtained can be used to optimize the concept development of Greenway planning in Ekaterinburg city and can help prevent a number of environmental problems arising after the “rapid” implementation of the strategy for the city development and surrounding areas.