Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Combustion, Explosion and Shock Waves

2019 year, number 6

Sound Velocity in Shock-Compressed Samples of the Mixture of Microand Nanodispersed Nickel and Aluminum Powders

V. V. Yakushev1, S. Yu. Anan'ev2, A. V. Utkin1, A. N. Zhukov1, A. Yu. Dolgoborodov2,3
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
3Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991 Russia
Keywords: реакционные (энергетические) материалы, наноматериалы, высокое давление, ударно-волновое инициирование реакций, ударная адиабата, скорость звука, детонация, reactive (energy) materials, nanomaterials, high pressure, shock-wave initiation of reactions, shock adiabat, sound velocity, detonation

Abstract

Sound velocity variation behind a shock wave front is measured in pressed samples of micro- and nanodispersed mixtures of nickel and aluminum powders at pressures of 10, 30, and 60 GPa in order to verify the possibility of a reaction with the formation of nickel aluminide in a submicrosecond time range. It is shown that, in a pressure range of up to 60 GPa, the sound velocity in the samples from a nanodispersed mixture is higher than in the samples from a microdispersed mixture. Moreover, upon reaching 60 GPa, the sound velocities in both mixtures with account for errors are practically equalized, which is related to melting of the samples. Based on the data obtained, it is concluded that there is no noticeable progress of the Ni + Al reaction during less than 1 s.