Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Combustion, Explosion and Shock Waves

2019 year, number 2

Reduced Kinetic Models for Methane Flame Simulations

I. Lytras, P. Koutmos, E. Dogkas
University of Patras, Patras, 26504, Greece
Keywords: сокращенная химия горения, окисление метана, ламинарные пламена, механизмы химических реакций, reduced combustion chemistry, methane oxidation, laminar flames, chemical reaction schemes

Abstract

The present paper describes the development of two reduced kinetic schemes suitable for multidimensional turbulent flame simulations in high-temperature oxidation of methane. Formal reduction of the USC Mech II C1-C4 detailed kinetic model by using the directed relations graph mechanism results in a 31-species derivative scheme for lean to near-stoichiometric conditions. To deduce a still shorter, simpler, and less stiff kinetic model, further species elimination is based on combined sensitivity and chemical time scale information to arrive at a 22-species scheme. The kinetic rates of lumped reactions are here expressed as simple Arrhenius rates, avoiding nonlinear algebraic combinations of excluded elementary steps or species. The accuracy is maintained by tuning pre-exponential constants in the global Arrhenius rate expressions and computing a range of target data. A more compact, quasi-global 14-species scheme is subsequently formulated by modeling fuel decomposition to a methyl radical pool, followed by CH3 oxidation with O and OH toward CH2 and CO, and retaining a full CO/H2/O2 subset. The C2-chain with recombination of CH3 into C2H6 and production of C2H2 is also represented in both schemes. Equilibrium 0D and 1D propagating premixed flames and axisymmetric co-flowing lifted laminar jet flames are computed through an iterative validation process. Accompanying computations with the USC Mech II mechanism, as well as available experimental results, are exploited for optimization. The comparisons demonstrate that the derived schemes ensure satisfactory agreement with data over the investigated parameter space.