Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2015 year, number 6

EARLY PRECAMBRIAN HIGH-GRADE METAMORPHOSED TERRIGENOUS ROCKS OF GRANULITE-GNEISS TERRANES OF THE SHARYZHALGAI UPLIFT (southwestern Siberian craton)

O.M. Turkina1,2, V.P. Sukhorukov1,2
1V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
2Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Keywords: Early Precambrian, metasedimentary rocks, trace elements, provenances, Sm-Nd isotope composition, growth and recycling of crust, Sharyzhalgai uplift

Abstract

We present results of geochemical and Sm-Nd isotope studies of high-grade metaterrigenous rocks of the Kitoi and northwestern Irkut terranes of the Sharyzhalgai uplift on the Siberian Platform in comparison with paragneisses of the southeastern Irkut terrane. The metasedimentary rocks of the first region are high-alumina garnet-sillimanite-cordierite-bearing paragneisses; their protoliths were mostly mudstones and pelitic mudstones by major-element composition. The low-alumina biotite gneisses of the Kitoi terrane formed, most likely, from magmatic protoliths similar in petrochemical features to intraplate volcanics. The major factor controlling the composition of the studied high-alumina paragneisses is precipitation of most of incompatible trace elements in the clay fraction of sediments, as evidenced from the positive correlation between trace-element and Al2O3 contents. The Cr and Ni contents, showing a positive correlation with MgO and no correlation with Al2O3, are an indicator of the contribution of the mafic-source material to the formation of high-alumina rocks. The contribution of a mafic source-derived material to the formation of terrigenous rocks increases in passing from Kitoi to northwestern Irkut terrane. The high-alumina and garnet-biotite paragneisses of the southeastern Irkut terrane are similar in trace-element patterns to the analogous rocks of the Kitoi terrane and northwestern part of the Irkut terrane but show higher Th contents and a distinct negative Eu anomaly related to the change in the composition of the felsic source. The participation of felsic potassic igneous rocks in the formation of the southeastern terrigenous sediments is consistent with their deposition after the Neoarchean collision processes (metamorphism and granite magmatism), whereas sedimentation in the Kitoi and northwestern Irkut terranes preceded them. The Sm-Nd isotope characteristics indicate that the latter sediments formed mostly as a result of the erosion of the Paleo-Mesoarchean crust, whereas the metasediments of the southeastern Irkut terrane formed with the participation of Paleoproterozoic juvenile rocks. Thus, the variations in the trace-element and isotope compositions of the high-grade metamorphosed terrigenous rocks reflect recycling and growth of the continental crust of the Sharyzhalgai uplift during the Neoarchean-Paleoproterozoic transition.

DOI: http://dx.doi.org/10.1016/j.rgg.2015.05.004