Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2015 year, number 5

NEOPROTEROZOIC COLLISIONAL S–TYPE GRANITOIDS OF THE YENISEI RIDGE: PETROGEOCHEMICAL COMPOSITION AND U–Pb, Ar–Ar, AND Sm–Nd ISOTOPE DATA

A.D. Nozhkin1, N.V. Popov2, N.V. Dmitrieva1,3, A.A. Storozhenko4, N.F. Vasil’ev4
1V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
2A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
3Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
4Krasnoyarskgeols'emka Enterprise, ul. Berezina 3a, Krasnoyarsk, 660022, Russia
Keywords: Early Neoproterozoic, collisional granitoids, petrogeochemistry, geochronology, Sm–Nd isotopy, Yenisei Ridge

Abstract

Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U–Pb (SHRIMP II), Ar–Ar, and Sm–Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S–type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0–2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM–2st) = 2200 Ma and εNd(T) = –6.0) and the presence of ancient zircon cores (1.80–1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U–Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K–Ar biotite age, 615.5 ± 6.3 Ma.

DOI: http://dx.doi.org/10.1016/j.rgg.2015.04.001