Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2015 year, number 1-2

CARBONATITE METASOMATISM OF PERIDOTITE LITHOSPHERIC MANTLE: IMPLICATIONS FOR DIAMOND FORMATION AND CARBONATITE–KIMBERLITE MAGMATISM

N.P. Pokhilenko1, A.M. Agashev2, K.D. Litasov1, L.N. Pokhilenko2
1Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
2V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
Keywords: Mantle, melting, diamond, peridotite, kimberlite, carbonatite, experiment

Abstract

Mineral inclusions in diamond record its origin at different depths, down to the lower mantle. However, most diamonds entrained with erupting kimberlite magma originate in lithospheric mantle. Lithospheric U-type diamonds crystallize during early metasomatism of reduced ( f O2 at the IW oxygen buffer) depleted peridotite in the roots of Precambrian cratons. Evidence of the metasomatic events comes from compositions of garnets in peridotitic xenoliths and inclusions in diamonds. On further interaction with carbonatitic melt, peridotite changes its composition, while diamond no longer forms in a more oxidized environment ( f O2 near the CCO buffer). Silicate metasomatism of depleted peridotite (by basanite-like melts) does not induce diamond formation but may participate in generation of group I kimberlite. Low-degree (below 1%) partial melting of metasomatized peridotite produces a kimberlite-carbonatite magmatic assemblage, as in the case of the Snap Lake kimberlite dike. Occasionally, mantle metasomatism may occur as reduction reactions with carbonates and H2O giving rise to hydrocarbon compounds, though the origin of hydrocarbons in the deep mantle remains open to discussion. Melting experiments in carbonate systems show hydrous carbonated melts with low H2O to be the most plausible agents of mantle material transport. An experiment-based model implies melting of carbonates in subducting slabs within the mantle transition zone, leading to formation of carbonatitic diapirs, which can rise through the mantle by buoyancy according to the dissolution-precipitation mechanism. These processes, in turn, can form oxidized channels in the mantle and maintain diamond growth at the back of diapirs by reducing carbon from carbonated melts. When reaching the lithospheric base, such diapirs form a source of kimberlite and related magmas. The primary composition of kimberlite often approaches carbonatite with no more than 10-15% SiO2.

DOI: http://dx.doi.org/10.1016/j.rgg.2015.01.020