Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2012 year, number 1

MODELING OF DEEP-SEATED HIGH-ALUMINA PARAGENESES ON THE BASIS OF THE STABILITY FIELDS OF CORUNDUM- AND SPINEL-NORMATIVE ASSEMBLAGES OF THE SYSTEM CaO-MgO-Al2O3-SiO2

N.V. Surkov and Yu.G. Gartvich
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
Keywords: Phase diagram, alkali-earth series of rocks, monovariant reactions, nonvariant equilibrium, "eclogitization" reaction, eutectic, magma genesis
Pages: 51-61

Abstract

To elaborate physicochemical models for the origin of crystalline rocks, experimental studies of the field of high-alumina assemblages of the system CaO-MgO-Al2O3-SiO2 were carried out at 10-30 kbar and 1250-1535 ?C. We have determined the phase relations between the melt (L) and An, Sp, Cpx, Cor, and Ga, the slope of the rays of the monovariant reactions An + Sp = Cpx + Cor (+ Ga) and L = Cpx + Ga + Cor + Sp, the position of the nonvariant point (An, Sp, Cpx, Cor, Ga, L), and the compositions of phases participating in these reactions.
Based on a topological analysis of the studied site of the system CaO-MgO-Al2O3-SiO2, we have substantiated that "eclogitization" must follow the reaction Opx + An + Sp = Cpx + Ga. A fundamental continuous series of eutectic monovariant equilibria was observed: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx (+ Ga) + An + Sp, and L = Cpx + Cor (+ Ga) + An. A change in the melt composition in this series of eutectic reactions depending on pressure must reflect the most likely magma genesis trend in nature. Composition fields in which the above series of reactions is observed with the composition fields of the rocks of magmatic formations showed that this series is most similar to the alkali-earth series of rocks. The mineralogical compositions of cumulates and phenocrysts found in the effusive and dike varieties of these rocks correspond to unique sets of subsolidus phase associations and individual subsolidus phases crystallizing in this fundamental eutectic series.